
CEGIS(T)
CounterExample Guided Inductive Synthesis

modulo Theories

Alessandro Abate1, Cristina David2, Pascal Kesseli3, Daniel Kroening13,

Elizabeth Polgreen1

1University of Oxford 	 2University of Cambridge	 3Diffblue Ltd

�1

Counterexample Guided Inductive
Synthesis Modulo Theories

Alessandro Abate1, Cristina David2,3(B) , Pascal Kesseli3,
Daniel Kroening1,3 , and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

cd652@cam.ac.uk
3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T)
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the

Supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN 712689
SC2. Cristina David is supported by the Royal Society University Research Fellow-
ship UF160079.

c⃝ The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-96145-3_15

A
u

th
o

r
P

ro
o

f

CEGIS(T)
Program synthesis is hard.

CEGIS framework that uses a 1st order theory
solver to

• verify generalized candidate solutions

• return more general counterexamples

CEGIS(T) is able to synthesize programs containing
arbitrary constants that elude other solvers.

!2

CEGIS(T)

• Extension to CEGIS framework

• Uses general counterexamples and candidates

• Avoids enumerating search space

• Can synthesize programs that elude other solvers

!3

SYNTHESIZE

VERIFY

CEGIS

∃P∀x . σ(P, x)

!4 [PLDI 2007]

SYNTHESIZE

CEGIS

SA
T

UNSAT

!5

P*

VERIFY

SYNTHESIZE

CEGIS

SA
T

UNSAT
VERIFY

!6

∃x . ¬σ(P*, x)

P*

SYNTHESIZE

CEGIS

SA
T

UNSAT
VERIFY

!7

∃x . ¬σ(P*, x)

CounterExample

VERIFY

CounterExample

CEGIS

!8

∃P* . ∀xi . σ(P*, xi)

∃x . ¬σ(P*, x)

UNSAT

SA
T

SYNTHESIZE

VERIFY

∃P* . ∀xi . σ(P*, xi)

CEGIS

UNSAT
SYNTHESIZE

SA
T

!9

P*

SYNTHESIZE VERIFY

Can I eat it?

errm..
Does it have legs?

Yes

No
Is it a plant?

!10

No

No

No

!11

!12

int x = 5;

while (x < 1000)
 x++;

assert(5 < x && x < 1005)

Safety invariant

init(x) ⟺ x = 0
trans(x, x′ �) ⟺ x′� = x + 1

inv(x) ∧ (x < 1000) ∧ trans(x, x′�) ⟹ inv(x′�)

init(x) ⟹ inv(x)

inv(x) ∧ ¬(x < 1000) ⟹ (x < 1005) ∧ (x > 5)

find inv(x) such that:

!13

Safety invariant

inv(x) = (4 < x) ∧ (x < 1003)

int x = 5;

while (x < 1000)
 x++;

assert(5 < x && x < 1005)

init(x) ⟺ x = 0
trans(x, x′ �) ⟺ x′� = x + 1

SYNTHESIZE

VERIFY

x = 95

!14

inv(x) = (x < 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

inv(x) = (x < 96) x = 96
inv(x) = (x < 97)

And so on ..

Can we ask more general
questions?

!15

No, it has
< 8 legs

No, it’s not a plant

No, it has
< 4 legs

!16

Can we give more general
answers?

!17

More general questions

More general answers

CEGIS(T)

!18

PROPOSITIONAL
SAT SOLVER

ADD CLAUSESDEDUCTION

DPLL

Theory Solver

DPLL(T)

!19

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

!20

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

!21

first order solver

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

!22

SA
T

UNSAT

Counter
Example

first order solver

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

!23

P*

first order solver

P*

P*[v]

Generalize

!24

Candidate

Generalized candidate

(x < 95)

(x < v)

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

P*[v]

!25

first order solver

Deduction

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

!26

is there a value for v that makes (x < v) a valid invariant

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

¬P*[v]

!27

first order solver

First order solver

Solves 1st order formula with:

• Arbitrary propositional

structure

• 1 quantifier alternation

!28

CEGIS(T) - SMT

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

!29

CEGIS(T) - SMT

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

!30

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

!31

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

∃v∀x . σ(P*[v], x) ∧ (v < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95

!32

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

UNSAT UNSAT

!33

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

UNSAT

!34

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

UNSAT

!35

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

∃v∀x . σ(P*[v], x) ∧ (v1 < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95

!36

P* = (10 < x) ∧ (x < 95)

P*[v] = (v0 < x) ∧ (x < v1)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

UNSAT

!37

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

SAT

!38

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

TIMEOUT TIMEOUT

!39

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Experiments
Benchmarks:

• Bitvectors

• Syntax-guided Synthesis competition

(without the syntax)

• Loop invariants

• Danger invariants

Solvers:

• CVC4

• EUSolver, E3Solver, LoopInvGen –

bitvectors with no grammar unsupported

!40

0

7.5

15

22.5

30

TIME (s)
<1s [1,10] [10,100] [100,600] T/O

10

5

10
12

22

30

011

27

Experiments

!41

Counterexample Guided Inductive
Synthesis Modulo Theories

Alessandro Abate1, Cristina David2,3(B) , Pascal Kesseli3,
Daniel Kroening1,3 , and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

cd652@cam.ac.uk
3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T)
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the

Supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN 712689
SC2. Cristina David is supported by the Royal Society University Research Fellow-
ship UF160079.

c⃝ The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-96145-3_15

A
u

th
o

r
P

ro
o

f

SOLVED
CVC4 - 29

CEGIS(T) - 49
TIME-
OUT

CEGIS(T) solves program synthesis via 1st order
solvers that support quantifiers:

• Enables use of existing solvers

Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples

CEGIS(T)

!42

www.cprover.org/synthesis

CEGIS(T) wants YOUR
solvers

!43

elizabeth.polgreen@cs.ox.ac.uk

