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Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T ), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T )
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the
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CEGIS(T)
Program synthesis is hard.


CEGIS framework that uses a 1st order theory 
solver to

• verify generalized candidate solutions

• return more general counterexamples


CEGIS(T) is able to synthesize programs containing 
arbitrary constants that elude other solvers.
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CEGIS(T)

• Extension to CEGIS framework

• Uses general counterexamples and candidates

• Avoids enumerating search space

• Can synthesize programs that elude other solvers
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SYNTHESIZE

VERIFY

CEGIS

∃P∀x . σ(P, x)
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∃x . ¬σ(P*, x)
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∃x . ¬σ(P*, x)
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VERIFY

CounterExample

CEGIS
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∃P* . ∀xi . σ(P*, xi)

∃x . ¬σ(P*, x)

UNSAT

SA
T

SYNTHESIZE



VERIFY

∃P* . ∀xi . σ(P*, xi)

CEGIS
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SYNTHESIZE VERIFY

Can I eat it?

errm..
Does it have legs?

Yes

No
Is it a plant? 
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No

No

No
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int x = 5; 

while ( x < 1000) 
  x++; 

assert( 5 < x && x < 1005) 

Safety invariant

init(x) ⟺ x = 0
trans(x, x′ �) ⟺ x′� = x + 1

inv(x) ∧ (x < 1000) ∧ trans(x, x′�) ⟹ inv(x′�)

init(x) ⟹ inv(x)

inv(x) ∧ ¬(x < 1000) ⟹ (x < 1005) ∧ (x > 5)

find inv(x) such that:



!13

Safety invariant

inv(x) = (4 < x) ∧ (x < 1003)

int x = 5; 

while ( x < 1000) 
  x++; 

assert( 5 < x && x < 1005) 

init(x) ⟺ x = 0
trans(x, x′ �) ⟺ x′� = x + 1



SYNTHESIZE

VERIFY

x = 95
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inv(x) = (x < 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

inv(x) = (x < 96) x = 96
inv(x) = (x < 97)

And so on ..



Can we ask more general 
questions?
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No, it has 
< 8 legs

No, it’s not a plant

No, it has 
< 4 legs
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Can we give more general 
answers?
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More general questions

More general answers

CEGIS(T)
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PROPOSITIONAL 
SAT SOLVER

ADD CLAUSESDEDUCTION

DPLL

Theory Solver

DPLL(T)
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P*

first order solver



P*

P*[v]

Generalize
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Candidate

Generalized candidate

(x < 95)

(x < v)
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first order solver



Deduction

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION
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is there a value for v that makes (x < v)  a valid invariant
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First order solver

Solves 1st order formula with:

• Arbitrary propositional 

structure

• 1 quantifier alternation


!28



CEGIS(T) - SMT

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION
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CEGIS(T) - SMT

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c
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∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c
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P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)



∃v∀x . σ(P*[v], x) ∧ (v < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95
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P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)



UNSAT UNSAT
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∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)



∃v∀x . σ(P*[v], x) ∧ (v1 < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95
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P* = (10 < x) ∧ (x < 95)

P*[v] = (v0 < x) ∧ (x < v1)

Target:

inv(x) = (4 < x) ∧ (x < 1003)



UNSAT
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P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)



SAT
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∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95



TIMEOUT TIMEOUT
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∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95



Experiments
Benchmarks:

• Bitvectors

• Syntax-guided Synthesis competition 

(without the syntax)

• Loop invariants

• Danger invariants


Solvers:

• CVC4

• EUSolver, E3Solver, LoopInvGen – 

bitvectors with no grammar unsupported
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Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
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CEGIS(T) solves program synthesis via 1st order 
solvers that support quantifiers: 

• Enables use of existing solvers


Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples


CEGIS(T)
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www.cprover.org/synthesis

CEGIS(T) wants YOUR 
solvers 
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