
Using model checking to
triage the severity of security
bugs in the Xen hypervisor.

Should we wake the developer up?

5 UC Berkeley

1 Amazon Web Services
2 University College London
3 University of Oxford
4 Queen Mary University of London

Byron Cook1,2, Björn Döbel1, Daniel Kroening1,3, Norbert Manthey1,

 Martin Pohlack1, Elizabeth Polgreen5,6, Michael Tautschnig1,4, Pawel Wieczorkiewicz1

1

6 Edinburgh University

Byron Cook1,2, Björn Döbel1, Daniel Kroening1,3, Norbert Manthey1,

 Martin Pohlack1, Elizabeth Polgreen5,6, Michael Tautschnig1,4,Pawel Wieczorkiewicz1

2

5 UC Berkeley

1 Amazon Web Services
2 University College London
3 University of Oxford
4 Queen Mary University of London

6 Edinburgh University

3

Problem:
• Most systems have layers of security

• Most bugs are not critical security
issues

• BUT determining which ones are is a
difficult, manual task

4

Problem:
• Most systems have layers of security

• Most bugs are not critical security
issues

• BUT determining which ones are is a
difficult, manual task

Important
secret stuff

5

Problem:
• Most systems have layers of security

• Most bugs are not critical security
issues

• BUT determining which ones are is a
difficult, manual task

• We show how to use model checking to
triage the severity of security bugs

• We make adaptations to CBMC, a
bounded model checker for C programs,
so that it scales to big code bases

• Case study: Xen

Solution:

• What is Xen?

• Manual triaging of security issues in Xen.

• Why model checking Xen is hard.

• Adaptations to CBMC to make it possible.

• Conclusions

6

Contents

7

What is Xen?
Hypervisor: creates and runs virtual machines

Amazon use a custom version of Xen on
some EC2 servers

8

What is Xen?

9

What happens when a bug is
discovered?

10

Responsible disclosure

What happens when a bug is
discovered?

11

Responsible disclosure

Members of the Xen project

What happens when a bug is
discovered?

12

Reachability is important

Can this XSA be triggered in *my* version of Xen?

XSA: Xen Security Announcement

13

14

Fix is not
time-critical

Fix is urgent

15

Fix is not
time-critical

Fix is urgent

16

Fix is not
time-critical

Fix is urgent

When is a fix urgent?

17

Important
secret stuff

• Well-engineered systems are
built with defence in depth

18

Important
secret stuff

• Well-engineered systems are
built with defence in depth

• Bugs may compromise one or
more security layers

19

Important
secret stuff

• Bugs may compromise one or
more security layers

• Well-engineered systems are
built with defence in depth

• The more layers the bug
compromises, the more severe
the bug.

20

How do we determine
if a fix is urgent?

21

Security test

How do we determine
if a fix is urgent?

22

Security test Fix is urgent

Fix is not
time-critical

How do we determine
if a fix is urgent?

23

Using model checking

24

Important
secret stuff

25

Important
secret stuff

Security tests establish
reachability of the bug

26

Encoding vulnerabilities as assertions
Vulnerabilities can be encoded as assertions

Can this assertion be reached and violated?

Reachability assertion

27

Can we use CBMC?

28

29

Can we use CBMC?

• CBMC

• Reachability slicer + CBMC

• Global init slicer + CBMC

• Full slicer + CBMC

30

• CBMC

• Reachability slicer + CBMC

• Global init slicer + CBMC

• Full slicer + CBMC

Can we use CBMC?

31

• CBMC

• Reachability slicer + CBMC

• Global init slicer + CBMC

• Full slicer + CBMC

Can we use CBMC?

32

• CBMC

• Reachability slicer + CBMC

• Global init slicer + CBMC

• Full slicer + CBMC

Can we use CBMC?

33

• CBMC

• Reachability slicer + CBMC

• Global init slicer + CBMC

• Full slicer + CBMC

Can we use CBMC?

34

Why is it hard?

• Big(ish) code base, long CEX

• Function pointers everywhere

• Function pointers configured at
boot and we can’t analyse boot
code

• Assembly code

35

• Modelled assembly code by hand

• Alias analysis based function-pointer
removal

• Aggressive program slicer

• Approximate removed code

• Spliced in code harnesses in order to
start analysis mid-way through the code

Solution?

36

Modelling assembly code

37

AARRGGHH FUNCTION POINTERS!!!!
Function pointer removal

38

• Modelled assembly code by hand

• Alias analysis based function-pointer
removal

• Aggressive program slicer

• Approximate removed code

• Spliced in code harnesses in order to
start analysis mid-way through the code

Solution?

39

“Aggressive” slicer

• Analyses part of the code base

• Approximates the remaining code

• Tailored by engineer input

40

180,000+ function calls

41

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Construct call graph

“Aggressive” slicer

42

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Find direct paths

“Aggressive” slicer

43

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Mark functions not on direct
paths to be havoc’d

“Aggressive” slicer

44

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Havoc functions

“Aggressive” slicer

45

Havoc-ing functionsApproximating function bodies

unknown return value
arguments passed-by-pointerArguments passed-by-

pointer

Unknown return
value

46

Approximating function bodies

Approximating function bodies

unknown return value
arguments passed-by-pointerArguments passed-by-

pointer

Unknown return
value

Havoc-ing functions

47

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Remove unreachable
functions

“Aggressive” slicer

48

“Aggressive” slicer
configurations
• Preserve all direct paths or shortest path

• Preserve functions N function calls away
form preserved paths

• Preserve functions by name

• Remove specific functions

49

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Havoc functions only more
than 1 function call away

from direct paths

50

“Aggressive” slicer
configurations
• Preserve all direct paths or shortest path

• Preserve functions N function calls away
form preserved paths

• Preserve functions by name

• Remove specific functions

51

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Do not havoc do_iret

52

“Aggressive” slicer
configurations
• Preserve all direct paths or shortest path

• Preserve functions N function calls away
form preserved paths

• Preserve functions by name

• Havoc specific functions

53

harness

do_hvm_op

hvmop_unmap_io_
range_from_ioreq_server

do_iretdo_mmu_update do_sysctl

assert

do_altp2m

put_page

cpy_to_usr

xsm_hvm_ct

xsm_hvm_ioreq_serve

rcu_lock_remote_
domain_by_id

get_cpu_info

copy_from_user_hvm

hypercall table

Direct Path
One function call away
Two function calls away
Three function calls away

Figure 1. A subsection of the call graph for the Xen hypervisor. The thick framed nodes
show the direct path from the harness function to an assertion representing XSA 238.
These functions are preserved by the approximate slicer. The thin, solid framed nodes
show functions which will be approximated, as described in Section 3.1, if we configure
the approximate slicer to preserve only functions on direct paths. If we preserve functions
up to one function call away from the direct paths, the light grey nodes represent
functions which will be preserved, and the unlabelled nodes represent functions which
will be approximated.

If the resulting program slice is still too large to analyse, the approximating
slicer can be configured to keep only functions on the shortest direct path. To
increase precision, we can preserve all functions within a given distance of function
calls from the direct paths, illustrated in Figure 1. To obtain scalability and
precision, we run multiple analyses with varying degrees of precision in parallel to
find the configuration that completes within the timeout with maximum precision.

Approximating behaviour of missing code. If a function is removed, we must
approximate the behaviour of that function in order to avoid missing counter-
examples. A coarse approximation is to havoc the function, i.e., assume the
function may return a non-deterministic value and may assign a non-deterministic
value to any arguments passed by pointer. This approximation is not strictly an
over-approximation, because it may under-approximate behaviour as described
below. We chose this simplification, because computing and refining a sound over-
approximation is computationally intensive, and missing some counterexamples
due to under-approximation is acceptable for our use case as we strive to support
the security expert in constructing tests.

Potential under-approximation. The first source of under-approximation are
global variables written to by a function that we removed. We partly mitigate the
absence of modelling this behaviour by starting our analysis in a non-deterministic
initial state, including non-deterministic global variables. It is, however, possible
that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to

6

Havoc do_iret

54

Approximating_Slice (CFG g, node entry, node target, bool direct, int distance)
S1 F P := remove_function_pointers(g)
S2 CG := compute_call_graph(F P)
S3 DP := get_direct_paths(CG, entry, target)
S4 DP := shortest_path(DP) if ¬ direct else DP
S5 mark_for_havoc = ÿ
S6 for node n in F P :
S7 if distance(F P , DP , n) > distance:
S8 mark_for_havoc := mark_for_havoc fi {n}
S9 for node n in mark_for_havoc:
S10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

3.3 Function Pointer Removal

By default, CBMC expands function pointers to a case statement over a set of
functions determined using an over-approximating type-based analysis. For the
configurable code base of Xen, the type-based analysis yields up to 300 functions
for a single function pointer. CBMC determines the precise set of function calls,
i.e., the subset of feasible cases, during symbolic execution. As our analysis running
on Xen uses non-deterministic initial states, symbolic execution would typically
deem all cases feasible, even though most of them are spurious. We added a new
flow-insensitive points-to analysis [24] to reduce the candidate set per pointer.
If the flow-insensitive points-to analysis yields an empty set as, e.g., caused by
pointers depending on boot code, we fall back to the original behaviour. With
this change, we introduce 20k fewer function calls, about 114k instead of 134k,
and hence reduce the likelihood of spurious counterexamples.

Configurable harnesses. Xen code supports several architectures. For our analysis
we pick a single architecture, e.g., Intel. This allows us to restrict the set of
functions considered for handling architecture specifics, while still using a non-
deterministic machine state. We thus support adding expert-provided code into
the harnesses described in Section 3.2 to restrict the candidates of these function
pointers to a specific function or a non-deterministic choice over a constrained set
of functions, e.g., excluding all AMD-specific functions.

3.4 Approximating Program Slicer

In order to focus analysis on the relevant part of the hypervisor, we introduce
a more aggressive slicing approach following the algorithm of Figure 1: we first
compute an approximation of the call graph using the function-pointer removal

6

Slicing algorithm:

55

Approximating_Slice (CFG g, node entry, node target, bool direct, int distance)
S1 F P := remove_function_pointers(g)
S2 CG := compute_call_graph(F P)
S3 DP := get_direct_paths(CG, entry, target)
S4 DP := shortest_path(DP) if ¬ direct else DP
S5 mark_for_havoc = ÿ
S6 for node n in F P :
S7 if distance(F P , DP , n) > distance:
S8 mark_for_havoc := mark_for_havoc fi {n}
S9 for node n in mark_for_havoc:
S10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

3.3 Function Pointer Removal

By default, CBMC expands function pointers to a case statement over a set of
functions determined using an over-approximating type-based analysis. For the
configurable code base of Xen, the type-based analysis yields up to 300 functions
for a single function pointer. CBMC determines the precise set of function calls,
i.e., the subset of feasible cases, during symbolic execution. As our analysis running
on Xen uses non-deterministic initial states, symbolic execution would typically
deem all cases feasible, even though most of them are spurious. We added a new
flow-insensitive points-to analysis [24] to reduce the candidate set per pointer.
If the flow-insensitive points-to analysis yields an empty set as, e.g., caused by
pointers depending on boot code, we fall back to the original behaviour. With
this change, we introduce 20k fewer function calls, about 114k instead of 134k,
and hence reduce the likelihood of spurious counterexamples.

Configurable harnesses. Xen code supports several architectures. For our analysis
we pick a single architecture, e.g., Intel. This allows us to restrict the set of
functions considered for handling architecture specifics, while still using a non-
deterministic machine state. We thus support adding expert-provided code into
the harnesses described in Section 3.2 to restrict the candidates of these function
pointers to a specific function or a non-deterministic choice over a constrained set
of functions, e.g., excluding all AMD-specific functions.

3.4 Approximating Program Slicer

In order to focus analysis on the relevant part of the hypervisor, we introduce
a more aggressive slicing approach following the algorithm of Figure 1: we first
compute an approximation of the call graph using the function-pointer removal

6

Slicing algorithm:

56

Approximating_Slice (CFG g, node entry, node target, bool direct, int distance)
S1 F P := remove_function_pointers(g)
S2 CG := compute_call_graph(F P)
S3 DP := get_direct_paths(CG, entry, target)
S4 DP := shortest_path(DP) if ¬ direct else DP
S5 mark_for_havoc = ÿ
S6 for node n in F P :
S7 if distance(F P , DP , n) > distance:
S8 mark_for_havoc := mark_for_havoc fi {n}
S9 for node n in mark_for_havoc:
S10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

3.3 Function Pointer Removal

By default, CBMC expands function pointers to a case statement over a set of
functions determined using an over-approximating type-based analysis. For the
configurable code base of Xen, the type-based analysis yields up to 300 functions
for a single function pointer. CBMC determines the precise set of function calls,
i.e., the subset of feasible cases, during symbolic execution. As our analysis running
on Xen uses non-deterministic initial states, symbolic execution would typically
deem all cases feasible, even though most of them are spurious. We added a new
flow-insensitive points-to analysis [24] to reduce the candidate set per pointer.
If the flow-insensitive points-to analysis yields an empty set as, e.g., caused by
pointers depending on boot code, we fall back to the original behaviour. With
this change, we introduce 20k fewer function calls, about 114k instead of 134k,
and hence reduce the likelihood of spurious counterexamples.

Configurable harnesses. Xen code supports several architectures. For our analysis
we pick a single architecture, e.g., Intel. This allows us to restrict the set of
functions considered for handling architecture specifics, while still using a non-
deterministic machine state. We thus support adding expert-provided code into
the harnesses described in Section 3.2 to restrict the candidates of these function
pointers to a specific function or a non-deterministic choice over a constrained set
of functions, e.g., excluding all AMD-specific functions.

3.4 Approximating Program Slicer

In order to focus analysis on the relevant part of the hypervisor, we introduce
a more aggressive slicing approach following the algorithm of Figure 1: we first
compute an approximation of the call graph using the function-pointer removal

6

Slicing algorithm:

57

Approximating_Slice (CFG g, node entry, node target, bool direct, int distance)
S1 F P := remove_function_pointers(g)
S2 CG := compute_call_graph(F P)
S3 DP := get_direct_paths(CG, entry, target)
S4 DP := shortest_path(DP) if ¬ direct else DP
S5 mark_for_havoc = ÿ
S6 for node n in F P :
S7 if distance(F P , DP , n) > distance:
S8 mark_for_havoc := mark_for_havoc fi {n}
S9 for node n in mark_for_havoc:
S10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

3.3 Function Pointer Removal

By default, CBMC expands function pointers to a case statement over a set of
functions determined using an over-approximating type-based analysis. For the
configurable code base of Xen, the type-based analysis yields up to 300 functions
for a single function pointer. CBMC determines the precise set of function calls,
i.e., the subset of feasible cases, during symbolic execution. As our analysis running
on Xen uses non-deterministic initial states, symbolic execution would typically
deem all cases feasible, even though most of them are spurious. We added a new
flow-insensitive points-to analysis [24] to reduce the candidate set per pointer.
If the flow-insensitive points-to analysis yields an empty set as, e.g., caused by
pointers depending on boot code, we fall back to the original behaviour. With
this change, we introduce 20k fewer function calls, about 114k instead of 134k,
and hence reduce the likelihood of spurious counterexamples.

Configurable harnesses. Xen code supports several architectures. For our analysis
we pick a single architecture, e.g., Intel. This allows us to restrict the set of
functions considered for handling architecture specifics, while still using a non-
deterministic machine state. We thus support adding expert-provided code into
the harnesses described in Section 3.2 to restrict the candidates of these function
pointers to a specific function or a non-deterministic choice over a constrained set
of functions, e.g., excluding all AMD-specific functions.

3.4 Approximating Program Slicer

In order to focus analysis on the relevant part of the hypervisor, we introduce
a more aggressive slicing approach following the algorithm of Figure 1: we first
compute an approximation of the call graph using the function-pointer removal

6

Slicing algorithm:

58

Approximating_Slice (CFG g, node entry, node target, bool direct, int distance)
S1 F P := remove_function_pointers(g)
S2 CG := compute_call_graph(F P)
S3 DP := get_direct_paths(CG, entry, target)
S4 DP := shortest_path(DP) if ¬ direct else DP
S5 mark_for_havoc = ÿ
S6 for node n in F P :
S7 if distance(F P , DP , n) > distance:
S8 mark_for_havoc := mark_for_havoc fi {n}
S9 for node n in mark_for_havoc:
S10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

3.3 Function Pointer Removal

By default, CBMC expands function pointers to a case statement over a set of
functions determined using an over-approximating type-based analysis. For the
configurable code base of Xen, the type-based analysis yields up to 300 functions
for a single function pointer. CBMC determines the precise set of function calls,
i.e., the subset of feasible cases, during symbolic execution. As our analysis running
on Xen uses non-deterministic initial states, symbolic execution would typically
deem all cases feasible, even though most of them are spurious. We added a new
flow-insensitive points-to analysis [24] to reduce the candidate set per pointer.
If the flow-insensitive points-to analysis yields an empty set as, e.g., caused by
pointers depending on boot code, we fall back to the original behaviour. With
this change, we introduce 20k fewer function calls, about 114k instead of 134k,
and hence reduce the likelihood of spurious counterexamples.

Configurable harnesses. Xen code supports several architectures. For our analysis
we pick a single architecture, e.g., Intel. This allows us to restrict the set of
functions considered for handling architecture specifics, while still using a non-
deterministic machine state. We thus support adding expert-provided code into
the harnesses described in Section 3.2 to restrict the candidates of these function
pointers to a specific function or a non-deterministic choice over a constrained set
of functions, e.g., excluding all AMD-specific functions.

3.4 Approximating Program Slicer

In order to focus analysis on the relevant part of the hypervisor, we introduce
a more aggressive slicing approach following the algorithm of Figure 1: we first
compute an approximation of the call graph using the function-pointer removal

6

Slicing algorithm:

59

Starting mid-way through the code
• Use a “harness” function to approximate the

environment

Starting mid-way
through the code

Use a “harness” to
approximate the environment

Contains function
pointers

60

Starting mid-way through the code

Starting mid-way through the code

Starting mid-way through the code

Make all function pointers valid

Make all pointers to
data structures valid

Incorporate
modelled functions

61

Hypercall table harness

62

Can we use CBMC now?
Yes…

63

Figure 3. Run time of the overall approach for selected configurations that finish within
8 hours. We fixed the parameters to distance=2, and advanced function pointer removal
as well as run full slicing after approximating slicing. Keeping all direct paths (DP1), as
well as unwinding loops (UW) during search are altered.

that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to
havoc these pointers, as this can change any memory to any value, and introduces
spurious counterexamples. There are 84 functions in Xen that accept pointers to
pointers, and we did not find any to be relevant to the XSAs we analysed.

4 Determining Severity of Vulnerabilities

Our aim is to assist experts in determining the severity of a security vulnerability,
within a specific version of Xen. To illustrate this use case, we selected a few
XSAs with di�erent properties: 200, 212, 213, 227, and 238 [30]. We build our
modifications on top of CBMC version 5.10, which uses MiniSat 2.2.1 [11]. We
disable MiniSAT’s pre-processor, as it usually consumes more run time than the
actual verification task for the given problems. We pick Xen release 4.8 [28], as
none of the selected XSAs have been mitigated in this version, and fixed handling
comments in assembly to allow us to compile the code with CBMC. Next, we
added the assertions and harness functions for each XSA. This is a required setup
step the complexity of which varies between adding a single assertion, and adding
a full harness for the hypercall table (about 300 instructions), depending on the
XSA. When starting from our provided package, these harnesses are already
present, and hence, future harnesses require less e�ort. To speed-up overall time,
and precision, we run multiple configurations of the slicer and analysis options in
parallel via AWS Batch [4], to obtain first results quickly. Our Xen and CBMC
packages including all scripting are available at [31].

Results. The experiments were run on AWS Batch using the EC2 r5 instance
family, with a memory limit of 110 GiB and an overall timeout of 8 hours per job.

8

Figure 3. Run time of the overall approach for selected configurations that finish within
8 hours. We fixed the parameters to distance=2, and advanced function pointer removal
as well as run full slicing after approximating slicing. Keeping all direct paths (DP1), as
well as unwinding loops (UW) during search are altered.

that a trace requires a global variable to take di�erent values during the trace;
such counterexamples would thus be missed.

The second source of under-approximation is not havocking pointers to pointers.
When a function receives a pointer A as argument that points to pointer B, we
do not havoc pointer B. When a function receives a pointer A that points to a
struct B that contains a pointer C, we do not havoc pointer C. We choose not to
havoc these pointers, as this can change any memory to any value, and introduces
spurious counterexamples. There are 84 functions in Xen that accept pointers to
pointers, and we did not find any to be relevant to the XSAs we analysed.

4 Determining Severity of Vulnerabilities

Our aim is to assist experts in determining the severity of a security vulnerability,
within a specific version of Xen. To illustrate this use case, we selected a few
XSAs with di�erent properties: 200, 212, 213, 227, and 238 [30]. We build our
modifications on top of CBMC version 5.10, which uses MiniSat 2.2.1 [11]. We
disable MiniSAT’s pre-processor, as it usually consumes more run time than the
actual verification task for the given problems. We pick Xen release 4.8 [28], as
none of the selected XSAs have been mitigated in this version, and fixed handling
comments in assembly to allow us to compile the code with CBMC. Next, we
added the assertions and harness functions for each XSA. This is a required setup
step the complexity of which varies between adding a single assertion, and adding
a full harness for the hypercall table (about 300 instructions), depending on the
XSA. When starting from our provided package, these harnesses are already
present, and hence, future harnesses require less e�ort. To speed-up overall time,
and precision, we run multiple configurations of the slicer and analysis options in
parallel via AWS Batch [4], to obtain first results quickly. Our Xen and CBMC
packages including all scripting are available at [31].

Results. The experiments were run on AWS Batch using the EC2 r5 instance
family, with a memory limit of 110 GiB and an overall timeout of 8 hours per job.

8

64

But…
We may produce spurious traces if:

• Modelling is wrong,

• Havoc-ing over-approximates relevant
behaviour

• Function pointer assignment is over-
approximate

65

And may miss traces if

• Modelling is wrong,

• Havoc-ing under-approximates relevant
behaviour (e.g., modifying globals)

• Not all direct paths are preserved

But…

66

In practise
• We ran on 5 XSAs

• Ran multiple configurations in
parallel using AWS Batch

• We found counterexamples for all
5 XSAs within an hour

• For 4/5 XSAs the counterexamples
were useful for test generation

67

Workflow

assertion

Fix is urgent

Fix is not
time-critical

Pre-
processed

source code

Slicer
configuration

CBMC

Security test

Counterexample

68

Open problems

• Automatically verify
counterexample traces

• Synthesise better function
approximations

• Automatically generate harnesses

69

Conclusions

• Plenty of open challenges

• Not complete and not sound BUT still
useful!

• We believe this is transferable to other
code bases

• Developers get to sleep more

70

Conclusions
• Contact me:

elizabeth.polgreen@ed.ac.uk

• Use our CBMC adaptations:
github.com/diffblue/cbmc

• Run our experiments:
github.com/nmanthey/xen/tree/
FMCAD2020

