Using model checking to
triage the severity of security
7=, bugs In the Xen hypervisor.

Should we wake the developer up?

Byron Cook.2, Bjorn Dobel!, Daniel Kroening'-3, Norbert Manthey?,
Martin Pohlack?, Elizabeth Polgreen3.6, Michael Tautschnig'4, Pawel Wieczorkiewicz’

1 Amazon Web Services

2 University College London

3 University of Oxford

4 Queen Mary University of London
5UC Berkeley

6 Edinburgh University

’

Byron Cook'.2, Bjorn Ddbel!, Daniel Kroening'3, Norbert Manthey?,
Martin Pohlack?, Elizabeth Polgreen36, Michael Tautschnig'4,Pawel Wieczorkiewicz'

1 Amazon Web Services

2 University College London

3 University of Oxford

4 Queen Mary University of London
5UC Berkeley

6 Edinburgh University

L . I
Problem:

* Most systems have layers of security

* Most bugs are not critical security
ISsues

e BUT determining which ones are is a
difficult, manual task

L . I
Problem:

* Most systems have layers of security

* Most bugs are not critical security
ISsues

e BUT determining which ones are is a
difficult, manual task

Important
secret stuff

Problem:

Most systems have layers of security

Most bugs are not critical security
ISsues

BUT determining which ones are is a

difficult, manual task -
Solution:

* We show how to use model checking to
triage the severity of security bugs

J * We make adaptations to CBMC, a
| bounded model checker for C programs,

so that it scales to big code bases

a—p e Case study: Xen

I
Contents

e What is Xen?

 Manual triaging of security issues in Xen.
 Why model checking Xen is hard.

e Adaptations to CBMC to make it possible.

e Conclusions

I
What is Xen?

Hypervisor: creates and runs virtual machines

Amazon use a custom version of Xen on
some EC2 servers

/U ﬂ ﬁ] ﬁ’

\\

What is Xen?

!} Console
[|

R
What happens when a bug is
discovered?

What happens when a bug is

| discovered?
L &— Xen
- Project

’< Responsible disclosure
L
o [A

What happens when a bug is

discovered?

. Xen

- Proiec t

Responsible disclosure
L [\ 3

T
Members of the Xen project
amaZon G r'm
webservices

XSA: Xen Security Announcement

ISSUE DESCRIPTION

The x86 instruction CMPXCHG8B is supposed to ignore legacy operand
size overrides; it only honors the REX.W override (making it
CMPXCHG16B). So, the operand size is always 8 or 16.

When support for CMPXCHG16B emulation was added to the instruction
emulator, this restriction on the set of possible operand sizes was
relied on in some parts of the emulation; but a wrong, fully general,
operand size value was used for other parts of the emulation.

As a result, if a guest uses a supposedly-ignored operand size prefix,
a small amount of hypervisor stack data is leaked to the guests: a 96
bit leak to guests running in 64-bit mode; or, a 32 bit leak to other
guests.

Adyisories, publicly released or pre-released

All times zre in 1TTC. For peneral infarmarion ahout Xen and security see the Xer Projecr wehsite and secarity policy. & ISON document listing afvisories is alsn available

Advisory

Public release

Updaled

VYersion

Tilk

AoAa-144

VAW 1200

o (vel) assigned

(rerclvased, bul cinbaszocd)

X§SAa4
XSA-242

. 141

22NCR22 12000
2020-00-22 1 2:000
VIS 15355

ranz (ver) assipnaed
none (veo assigned

(Perleasad, hur embaroned)
(Prercleased, bul crnbuzgoed)
Unuyed Xen Sevuny Advesory nunber

XNA-140
XSA-1TG
XSA-128

2N LR22 T2
2ANCG-22 1 2000
2020-00-22 1 2:00

ranz (ver) assipnad
nangs (ver) assipned
Lone (vet) assigned

(I¥eraleasad, hur erhaspned)
(Preraieased, hur embargned)
(Prerzleazed, but embargoed)

XNALY

VAR TR

ranz (ver) assipnad

(I*¥eraeasad, hur emhbasoner)

KNSA-16

2OVHG-22 1 2000

rans (ver) assipnexd

(Prereleased, hur embargoed)

2020-06-24 1 2:00

2020-08-24 12:17]

CVE-2020-11351

QLEMTU: usb: ovt-of-bounds ow access isspe

34120200022 1 2:00

none (yeo assigned

(Prereleased, bul ernburgoed)

MLALE LIS PH UL

nome (ye ass1gned

(Prercleased, bul embuzgoed)

2020-07-16 12:00
2020-07-07 12:00
NLALEATRIPSPHUL

2020-07-21 11:00
2020:07-07 12:23
22U 1423

o W W

CVE-2020-15852
CVE-2020-15557
V-1 5%

Livax toperm bitmap context swiching issues
nog-gaxnke modifeaion of live EPT FTE
Mussimg abgnment chedk m VUPUOP e ler_vepu_mdo

VAL T2

VAN TR

UV HE 20 20-19%5%

mzathcient cache wrme-rack under V'l.d

X8A-410

2NRNHO6-ND 1455
22U 1200

220-06-11 1309
22007 1218

LE Vo | N

CVE-2120-0%13
VE-2U20-15563

Special Register Rufter specolarive side channel
mverted vade pads m X860 daty VEAM ueking

NSA]

20020414 12000

21020014 122000

w

<201]2

¥

Bad conbnuabicn bandling 1 UNTUABOP_cupy

XSA-31T

XSA-3LG

2NCT-NT 12000

2020-04-149 12:00

2R0-07-NT 1218

2020-04-149 1 2:00

DT

CVE-2N21-155%454
CVE-2020-11745

Incarrect errar hardling in event chaanel port allncarion
Bad emor path in GNTTABOP map prant

| @Q.
F|x IS hot

time-critical

Fix is urgent

J

Fix is not
time-critical

Fix is urgent

J

Fix is not
time-critical

 Well-engineered systems are
built with defence in depth

Important
secret stuff

 Well-engineered systems are
built with defence in depth

e Bugs may compromise one or
more security layers

Important
secret stuff

 Well-engineered systems are
built with defence in depth

e Bugs may compromise one or
more security layers

* The more layers the bug
compromises, the more severe

How do we determine
if a fix is urgent?

...............................

How do we determine

Security test

How do we determine

if a fix is urgent?

_ rax, rax, Dx3

..........................

Security test

—J = Fix is not
time-critical

Using model checking

Important
secret stuff

Security tests establish
reachability of the bug

Important
secret stuff

R
Reachability assertion

ISSUE DESCRIPTION

The x86 instruction CMPXCHG8B is supposed to ignore legacy operand
size overrides; it only honors the REX.W override (making it
CMPXCHG16B). So, the operand size is always 8 or 16.

When s DN
emulatq

e assert(op_bytes==8 ||

operany

As a result, if a guest uses a supposedly-ignored operand size prefix,
a small amount of hypervisor stack data is leaked to the guests: a 96
bit leak to guests running in 64-bit mode; or, a 32 bit leak to other
guests.

Can we use CBMC?

C Bounded Model Checker http://www.cprover.org/cbmc

\» 20,790 commits

Branch: develaop ~

New pull request

¥ 142 branches 7 0 packages

’ﬂ smowton Merge pull request #5231 from smowton/smowton/feature/fix-string-to-

B .githooks

B .github

B cmake

M doc

B integration/xen
M jbmc

Bm pkg/arch

Bl regression

Make the pre-commit hook report

Include User Guide item in pull req
Add DownloadProject cmake scripi
Merge pull request #5111 from kark
Fix Xen integration test

Merge pull request #5231 from sm

Add CBMC package build file for A

Merge pull request #5111 from kar_

Can we use CBMC?

e CBMC
 Reachability slicer + CBMC

e Global init slicer + CBMC
{

!

e Full slicer + CBMC

Can we use CBMC?

+ CBMC X

 Reachability slicer + CBMC

L

e Global init slicer + CBMC
{

!

e Full slicer + CBMC

Can we use CBMC?

+ CBMC X

» Reachability slicer + CBMC X

2,
W

e Global init slicer + CBMC 7,
{

!

e Full slicer + CBMC

I

Can we use CBMC?

+ CBMC X
» Reachability slicer + CBMCX
)
* Global init slicer + CBI\/IC><7:Zz / Sy
W|' i

e Full slicer + CBMC

F/H

I

Can we use CBMC?

+ CBMC X
» Reachability slicer + CBMC X

* Global init slicer + CBMGX

« Full slicer + CBMCXJ

Why is it hard?

* Big(ish) code base, long CEX
* Function pointers everywhere

* Function pointers configured at
boot and we can’t analyse boot
code

* Assembly code J

*

I
Solution?

* Modelled assembly code by hand

e Alias analysis based function-pointer
removal

* Aggressive program slicer
* Approximate removed code

e Spliced in code harnesses in order to
start analysis mid-way through the code

R
Modelling assembly code

Function pointer removal

I
Solution?

* Modelled assembly code by hand

e Alias analysis based function-pointer
removal

 Aggressive program slicer
 Approximate removed code

e Spliced in code harnesses in order to
start analysis mid-way through the code

R
“Aggressive” slicer

* Analyses part of the code base
 Approximates the remaining code

e Tailored by engineer input

180,000+ function calls

.
“Aggressive” slicer

@o_sysetD :
e UL LR LR LRy -

@ to

—_—

(XSIIl_hVHl_Ct) i __ __ /

hvmop unmap io
range from ioreq server

(Xsm_hvm_ioreq_serve) / \\(getcpuinf®

rcu_lock remote Y (copy_from_user_hvm)
domain by id (assert)

Construct call graph

- /,jﬁ Cput]iagi[

.
“Aggressive” slicer

@o_sysetD

: \ :

@ to

_— —

. ~ r
hvmop unmap io (Xsm_hvm_ct) N

B . i — t
/ Cpu _page) L“angefromioreqserver | - N
< T
(Xsm_hvm_ioreq_serve) / l (

get_cpu_info)
rcu_lock remote . (copy_from_user_hvm)
domain by id (assert)

Find direct paths

“Aggressive” slicer

; do mmypA update N v - f

(o mmaupdate) . | |

............. < 2o v Suseet OPQHD _
8 /

) >< x Cp - age) [hvmop_un.map_lo_](Xsm m—CO . x .
N J) range from_ioreq server] -
N\ & P ——
xsm__hvm iore Serve) / l (get%info)
copy fr u

ser_hvm)

rcu_loc emote . (
domgfh Ny id (assert)

Mark functions not on direct
paths to be havoc’d

“Aggressive” slicer

(harness)

@o mmx update)

e)[hvmop unmap io](;(sm\wfln_ ct) ~)
range from_ioreq server ; (

rcu loc emote . (copy_fr user_hvm)
dom (assert)

y1d

Havoc functions

I
Havoc-ing functions

int function_with_no_body(int *a, int *b);

Unknown return
Arguments passed-by-
pointer

-
Havoc-ing functions

int function_with_no_body(int *a, int *b);

Unknown return
Arguments passed-by-
pointer

int function_with_no_body(int *a, int *b)

int result = nondet_int();
int a = nondet_int();

int b = nondet_int();
return result;

“Aggressive” slicer

(do_mm update
T

CP 1Gag e) [hvmop_un.map_lo_] m_ct) T
range from ioreq server) -
<
(Xsm_hvm_iore Serve) / l (get%info)
copy fr u

rcu_ loc emote . (
domagth Ny id (assert)

ser_hvm)

Remove unreachable
functions

-
“Aggressive” slicer
configurations

* Preserve all direct paths or shortest path

* Preserve functions N function calls away
form preserved paths

* Preserve functions by name

* Remove specific functions

. \)
- @pytousr}»(X)
,>< p ¥ Cputpage)[hvmop_un.m ap_10_](;csmhvmct) i)
N J) range from_ioreq server] - ; S(
N\ & Pu——
X

Sm_hvm_ioreq_serve) / l \(get_cpu_info)

rcu_lock remote . G}Opy_from_user_hvm)
domain by id (assert)

Havoc functions only more
than 1 function call away

from direct paths

-
“Aggressive” slicer
configurations

* Preserve all direct paths or shortest path

* Preserve functions N function calls away
form preserved paths

* Preserve functions by name

* Remove specific functions

@o mmx update) Cdo_iret) (do h\}m_op). @v ysctl

e)[hvmop unmap io](XSIII m_ct) \)
range from_ioreq server ; (

J' Qget%info)

(copy_fr user_hvm)

rcu loc emote
dom Ny id

(ass'ert)

Do not havoc do iret

-
“Aggressive” slicer
configurations

* Preserve all direct paths or shortest path

* Preserve functions N function calls away
form preserved paths

* Preserve functions by name

e Havoc specific functions

. \)
B @pytOUSO*CX)
XX) o b e 2D X
N J) range from ioreq server) -
A o Pum——
X

Sm_hvm_ioreq_serve) / l \>(

get_cpu_info)
rcu_lock remote . G}Opy_from_user_hvm)
domain by id (assert)

Havoc do Iret

R
Slicing algorithm:

Approximating__Slice (CFG g, node entry, node target, bool direct, int distance)

si. F'P := remove_ function_pointers(g)

2 C'G := compute_call_graph(F'P)

s3s. DP := get_direct_paths(CG, entry, target)

s¢ DP := shortest_path(DP) if — direct else DP
ss mark__for_havoc = ()

ss for node n in F'P:

if distance(F'P, DP, n) > distance:

8 mark_for__havoc := mark_for__havoc U {n}

S

~

ss for node n in mark__for__havoc:
$10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

R
Slicing algorithm:

Approximating__Slice (CFG g, node entry, node target, bool direct, int distance)

si. 'P := remove_ function_pointers(g)

2 C'G := compute_call_graph(FP)

s3s. DP := get_direct_paths(CG, entry, target)

s¢ DP := shortest_path(DP) if — direct else DP
ss mark__for_havoc = ()

ss for node n in F'P:

if distance(F'P, DP, n) > distance:

8 mark_for__havoc := mark_for__havoc U {n}

S

~

ss for node n in mark__for__havoc:
$10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

R
Slicing algorithm:

Approximating__Slice (CFG g, node entry, node target, bool direct, int distance)

S1

S2

S3

S4

S5

S6

S

~

S8

S9

S10

F P := remove__function_pointers(g)
C'G := compute_call_graph(F'P)
DP := get_direct_paths(CG, entry, target)
DP := shortest_path(DP) if — direct else DP
mark__for_havoc = ()
for node n in F'P:
if distance(F' P, DP, n) > distance:
mark_for__havoc := mark_for__havoc U {n}
for node n in mark__for__havoc:
havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

R
Slicing algorithm:

Approximating__Slice (CFG g, node entry, node target, bool direct, int distance)

si. 'P := remove_ function_pointers(g)

2 C'G := compute_call_graph(F'P)

s3s. DP := get_direct_paths(CG, entry, target)

s¢ DP := shortest_path(DP) if — direct else DP
ss mark__for_havoc = ()

ss for node n in F'P:

if distance(F'P, DP, n) > distance:

8 mark_for__havoc := mark_for__havoc U {n}

S

~

ss for node n in mark__for__havoc:
$10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

R
Slicing algorithm:

Approximating__Slice (CFG g, node entry, node target, bool direct, int distance)

si. 'P := remove_ function_pointers(g)

2 C'G := compute_call_graph(F'P)

s3s. DP := get_direct_paths(CG, entry, target)

s¢ DP := shortest_path(DP) if — direct else DP
ss mark__for_havoc = ()

ss for node n in F'P:

if distance(F'P, DP, n) > distance:

8 mark_for__havoc := mark_for__havoc U {n}

S

~

ss for node n in mark_for__havoc:
$10 havoc_object(n)

Figure 1. Approximating slicing is applied to input program represented by its control-flow
graph g, and configurable in the entry- and target nodes, whether or not to consider all
direct paths, and the maximum distance.

Starting mid-way
through the code

x86_emulate(
x86_emulate_ctxt *ctxt,

Contains function
pointers

~\

x86_emulate_ops *ops)

Use a "harness” to
approximate the environment

harness_read(
x86_segmen:Fseg , Clln ﬁO;pfO ratte_
offset,
v date. moaeiliea Tunctions .
bytes, Make all pointers to

x86_emulate_ctxt *ctxt) _
data structures valid
if(bytes==1)

((*Yp_data)[@]=nondet_char();
else if(bytes==2)

((*Yp_data)[@]=nondet_short();
else if(bytes==4)

((*Yp_data)[@]=nondet_int();
else if(bytes==8)

main()

cpu_user_regs harness_regs;

x86_emulate_ctxt harness_ctxt;
harness_ctxt.regs=&harness_regs;
harness_ctxt.addr_size=64;

C *)p_data) [@]=nondet_longlong(); x86_emulate(&harness_ctxt, &harness_ops);
else if(bytes==10) }
{
}
else

—CPROVER_assert(@, "read size");

x86_emulate_ops harness_ops = {
.read harness_read,
.insn_fetch = harness_read,
write = harness_write,
.cmpxchg harness_cmpxchg,

Make all function pointers valid

60

R
Hypercall table harness

#define ARGS(x, n) \
[__HYPERVISOR_ ## x J1={n, n}

#define COMP(x, n, c¢) \
[__HYPERVISOR_ ## x J={n, c}

void do_hypercall ()
{

int nondet;
switch(nondet)

const hypercall_args_t gase N
hypercall_args_table[NR_hypercalls] = .
{ 7P -ares- LNEDYP ! XEN_GUEST_HANDLE (const_trap_info_t) trapsi;
ARGS (set_trap_table, 1), do_set_trap_table(trapsl);
ARGS (mmu_update , 4), break;
case 2:

ARGS (set_gdt, 2),
(-8) XEN_GUEST_HANDLE (mmu_update_t) ureqs2;

unsigned int count2;
XEN_GUEST_HANDLE (uint) pdone2;

unsigned int foreigndom2;

do_mmu_update (ureqs2, count2, pdone2, foreigndom2);
break;

case 3:

XEN_GUEST_HANDLE (ulong) frame_list3;

unsigned int entries3;
do_set_gdt(frame_list3,

#define HYPERCALL (x) \

[__HYPERVISOR_ ## x] = \

{ (hypercall_fn_t %) do_ ## x, \
(hypercall_fn_t %) do_ ## x }

#define COMPAT_CALL(x) \

[__HYPERVISOR_ ## x] = \

\

X

{(hypercall_fn_t %) do_ ## x,

(hypercall_fn_t x) compat_ ## entries3);

static const hypercall_table_t
pv_hypercall_table[] = {
COMPAT_CALL (set_trap_table),
HYPERCALL (mmu_update),
COMPAT_CALL (set_gdt),

e
Can we use CBMC now?

Yes...

XSA Run Times

® XSA 200 ¥ M

@ v XSA 212

c 10% 4 XSA 213

§] 4+ XSA227

P % XSA 238

:g X X X X

C

-

— 3 _

= 103 4 o

)] ‘ 4 v v

5 H + + + 4 e o
oo — o N o © o~ N~
25 25 =5 25 =5 =h

Configuration

Figure 3. Run time of the overall approach for selected configurations that finish within
8 hours. We fixed the parameters to distance=2, and advanced function pointer removal
as well as run full slicing after approximating slicing. Keeping all direct paths (DP1), as
well as unwinding loops (UW) during search are altered.

I
But...

We may produce spurious traces if:
e Modelling is wrong,

e Havoc-ing over-approximates relevant
behaviour

* Function pointer assignment is over-
approximate

I
But...

And may miss traces if
e Modelling is wrong,

e Havoc-ing under-approximates relevant
behaviour (e.g., modifying globals)

 Not all direct paths are preserved

e
In practise

e \We ran on 5 XSAs

 Ran multiple configurations in
parallel using AWS Batch

* \WWe found counterexamples for all
5 XSAs within an hour

* For 4/5 XSAs the counterexamples
were useful for test generation

R
Workflow
processed Slicer

configuration
source code CBMC

Counterexample
_ . Security test
» Fix is not
vy _— time-critical

67

Pre-

R
Open problems

 Automatically verify
counterexample traces

e Synthesise better function
approximations

 Automatically generate harnesses

.
Conclusions

* Plenty of open challenges

* Not complete and not sound BUT still
useful!

e \We believe this is transferable to other
code bases

* Developers get to sleep more . 'L

.
Conclusions

e Contact me;
elizabeth.polgreen@ed.ac.uk

e Use our CBMC adaptations:
github.com/diffblue/cbmc

* Run our experiments:
github.com/nmanthey/xen/tree/
FMCAD2020 .1

T

(e

