Satisfiability and Synthesis Modulo
Oracles
Elizabeth Polgreen, Andrew Reynolds, Sanjit A. Seshia

No. byt I con kel you that
ls W\O Program Lorred'? on ""r‘“"' 3t ghild return 13,

.

Find a function that transforms Cat A into Cat B?

Can | use program synthesis?
df.f(CatA) = CatB

Find a function that transforms Cat A into Cat B?

- Load image
- Compile f

- Apply f to all pixels
- Output image

f(pixel value, location)

df Vpixels, locs . f(CatA(loc), loc) = CatB(loc)

Find a function that transforms Cat A into Cat B?

Can | use program synthesis?

Give all pixels input-output examples prior to solving?
d7.7(122,0) = 141 A ... Af(133,65536) = 144

uild a new solver?

Find a digital controller K for this LTI system?

Can | use program synthesis?

1k . Stable(A — Bk) A Vx . Safe(x)

! PROBLEM !!

We tried this!
- Verifier needs to find eigenvalues
- Extremely non-linear

Do | need to build a new solver?

Automated formal synthesis of provably safe digital
controllers for continuous plants

Alessandro AbateZ(’ - lury Bessa3(") - Lucas Cordeiro®(" - Cristina David>() -
Pascal Kesseli®() - Daniel Kroening?(- Elizabeth Polgreen’

Increase Unfolding Bound

Increase Precision

VERIFY

: . PASS
L.SYNTHESIZE | s\ 2.SAFETY 3.PRECISION 4.COMPLETE 3—>

ry L N Y NN N T

UNSAT/ Inputes NSAT/ Kk T/F K T/F
K model

Y

Y Fixed .
BMC-based bxed-point Completeness

Verifier Arithmetic Verifer
Verifier

statig executable executable
constraints

Y
Program Search

Find prime factors of a number?

L= (S)

Can | use SMT?
af,, > . isPrime(f)) A isPrime(f)) Af; *f, =x

Do | need to build a new solver?

Why don’t off-the-shelf solvers work?

e Parts are hard to model with static constraints e.qg., the image
processing library.

* Parts are hard to reason about e.g., eigenvalues, primes.

* Too many constraints, which ones are important? e.g., which
pixels matter?

q Solution: Use executable “oracles”

Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation

What is an oracle?

Query
Is this number prime?

Response

No, it is not prime.

\

v \

10

Existing use of oracles:

e EXisting synthesis algorithms are using oracles!
e Jha and Seshia[1] set out the theory behind this.

e Qur contribution: defining satisfiability/synthesis modulo
oracles problem and proposing a unifying algorithm

[1] A theory of formal synthesis via inductive learning - Jha and Seshia

11

Existing use of oracles:

* Counterexample Guided Inductive Synthesis [2]

[SYNTHESIZE J—‘ No
Solution

Query f*]cex © X
L 4

Is my program “x + 5” correct?
VERIFY Solution

%

[2] Combinatorial sketching for finite programs - Solar Lezama et al

12

Existing use of oracles:

o CEGIS(T) [3]

e |ICE learning [4]

Is my program “x + 5” correct?
Is my invariant

%
X Ct? & \ w\;@

[3] Counterexample Guided Inductive Synthesis modulo Theories - Abate et al
[4] ICE: A robust framework for learning invariants - Garg et al

13

Existing use of oracles:

* Program lifting [5]

Is my program correct?

TR

[5] Program Lifting using Gray-Box Behavior - Collie et al

14

Examples

People use oracles, but they build their own custom solver.
Why?

e Solver needs custom information about the oracles (what
does the response from the oracle mean?)

What if we could communicate this information to an off-
the-shelf SMT or SyGuS solver?

15

Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation

16

What is an oracle?

* We define how the oracle is queried by defining an interface

Query

'y :query domain
Z

. response co-domain

17

What is an oracle?

* We define how the oracle is queried by defining an interface

Query . query domain
\ . response co-domain
gen - ASSUMPLION generator

sen - CONStraint generator

* and assumption and constraint generators, which generate:
- assumptions the solver is allowed to make
- and constraints the solver must abide by

18

Example oracle: O

Is this number y prime?

\

: (v : integer)
. (z: bool)

ven - Prime(y) =z
en @

8

prime

Solve: Jx.prime(x) A(x%2 = 1)

19

20

Example oracle: 0,

s this number y prime? Solve: dx.prime(x) A (x%2 = 1)

Okay, now | know | can assume
prime(l) = false

. (v : integer)

. (z : bool) '@
gen - prime(y) = z

en + O

8

21

Example oracle: @positive—wimess

Is my program f*
correct?

K

: (f* @ int — int)
2 (g7 1 int, 2, @ int)
. &

en

gen - f(z) = 2

Example oracle: @positive—wimess

Is my program f* Jr=x+1

5. it

Okay, now | know that a valid
proaram f must satisfy f(7) = 13

: (f* 1 int — int)

: (Zl . int,Zz . lnt)

en' O
gen : f (ZZ) — <3

Oracle function symbols

Is this number y prime?

J
\
An oracle function symbol is a

symbol whose behaviour is defined
to be the same as an external
oracle.

Note: oracle must be functional

: (v : integer)
. (2 : bool)

prime is an oracle function symbol

een - PTIMe(y) = 2
gen 2%

23

Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation

24

Satisfiability Modulo Theories and Oracles (SMTO)

An SMTO problem is a tuple:
f :aset of ordinary function symbols

@ : a set of oracle function symbols
p :aformulain a background theory
0)

: a set of oracle interfaces

{fpfz} : (v : integer)
: (z: bool)

: prime(f;) A prime(f,) A (f; *f, = 24) gen * Prime(y) =z

20, gen " 1%

Is this satisfiable? What is a valid assignment to f; and f,?

25

Satisfiability Modulo Theories and Oracles (SMTO)
0

prime
SAT? : (y : integer)
.) : (z2: bool)
prime(f,) A prime(fy) A (f; *f, = 24) 1 prime(y) = z

en:g

8

e If prime does what we expect, then yes! But we don’t know
that

* |f we haven’t called the oracle, an assignment must work for
ALL possible behaviours of prime

o« When we call © we get assumptions about prime

prime’

e |f the assumptions rule out all possible assignments: UNSAT

20

27

Satisfiability Modulo Theories and Oracles (SMTO)
0

prime

SAT? : (v : integer)

.) : (z2: bool)
prime(f;) A prime(f;) A (f; *, = 24) 2 prime(y) =z

en:g

8

Conjunction of assumptions. True if no assumptions

/

Satisfiable iff 3f,, f,.Vprime A = p is satisfiable
Unsatisfiable iff f,, f, . dprime . A A p is unsatisfiable

Unknown otherwise

28

Satisfiability Modulo Theories and Oracles (SMTO)
0

prime

SAT?

prime(f,) A prime(f,) A (f; *f, = 24)

: (v : integer)

: (z; : bool, z, : integer)
en t DYime(y) =z

Poen: 1 < 22

—
Y

4

a

Constraints must be obeyed by the solver: Conjunction of
constraints. True if no

/ constraints.

Satisfiable iff Af, f, . Vprime .A = (p A B) is satisfiable

Unsatisfiable iff 3f;, f, . dprime .A A p A B is unsatisfiable

Unknown otherwise

Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

START

UNKNOWN SAT

29

Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate assumptions

M

UNKNOWN SAT

30

Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate assumptions

UNKNOWN SAT

31

Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate constraints

UNKNOWN SAT

32

Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate assumptions

UNKNOWN SAT

CONFLICTING ASSUMPTIONS!

33

Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate constraints

UNKNOWN SAT

CHANGEABLE RESULT!!

34

Definitional
Satisfiability Modulo Theories and Oracles (SMTO)

A definitional SMTO problem is a tuple:
. a set of ordinary function symbols

: a formula in a background theory

/
@ : a set of oracle function symbols
P,
@

: a set of oracle interfaces

And:
e All oracle interfaces define oracle functions

* There are no constraint generators

—> No conflicting assumptions (only functional oracles)
— No changeable results (no constraints)

35

Coming up
e EXxisting use of oracles

e Formal definition of oracle interfaces

e SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

e Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

e More cat pictures

* Prototype evaluation

36

Solving (definitional) SMTO

Satisfiable iff Af, f, . Vprime .A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

SMT solver

model

UNSAT

assumptions

Oracle Consistency

37

Solving (definitional) SMTO

Satisfiable iff Af, f, . Vprime .A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

UNSAT

SMT solver

model

assumptions

Oracle Consistency

A « tTrue
while (true)
{
if (pAA) is UNSAT.
return UNSAT
else
1f (model consistent with Eﬂ
return SAT
else
conjoln assumptions to A

Solving (definitional) SMTO

Satisfiable iff Af, f, . Vprime .A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

UNSAT

SMT solver

model

assumptions

Oracle Consistency

A « tTrue
while (true)
{
if (pAA) 1s UNSAT.
return UNSAT
else
1f (model consistent with Eﬂ
return SAT
else
conjoln assumptions to A

Solving (definitional) SMTO

Satisfiable iff 3f,, /, . Vprime.A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

UNSAT

SMT solver

model

assumptions

Oracle Consistency

A « tTrue
while (true)
{
if (pAA) is UNSAT.
return UNSAT
else
1f (model consistent with Eﬂ
return SAT
else
conjoln assumptions to A

Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation

41

J,
0
VX
4]

¢ Vx.corr(f) A f(x) < 256

Synthesis Modulo Oracles (SyMO)

A SyMO problem is a tuple:
. a tuple of functions to synthesise

f
0 . a set of oracle function symbols
VX

¢ :aformulain a background theory,
where ¢ is quantifier-free

: a set of oracle interfaces

corr

y = (f*:int — int)

Z : (Zl . BOOZ,Zz . lnt,Z3 . lnt)
o en

—

Vg

: {corr}

: corr(f*) =z,

ﬂgen : f(ZZ) — 43

8

{0

COI"I"}

What is a valid f ?

42

Synthesis Modulo Oracles (SyMO)

What is a valid f ?

Vx.¢:Vx.corr(f) A f(x) < 256

f is VALID if there is no x such that ¢ is false
i.e., if the SMTO problem (X, 5), —.¢{f —]‘_>’:}, 5) is UNSAT

f is INVALID if there is an x such that ¢ is false
.e., if the SMTO problem (X, @, —p{f — %), O) is SAT

43

Synthesis Modulo Oracles (SyMO)

A SyMO problem is a tuple:
f - a tuple of functions to synthesise

. a set of oracle function symbols

0
VX . ¢ :aformulain a background theory,
where ¢ is quantifier-free

: a set of oracle interfaces

And:

* All assumption generators define oracle
function symbols

e All oracles are functional

— checking 7 is valid is now definitional SMTO

44

Coming up
e EXxisting use of oracles

e Formal definition of oracle interfaces

e SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

e Synthesis with oracles (SyMO):
- when are solutions correct
* - unifying algorithm for solving

e More cat pictures

* Prototype evaluation

45

Solving SyMO

Constraints used to guide synthesis phase

Synthesis

46

Solving SyMO

Constraints used to guide synthesis phase

Synthesis
1f.B

UNSAT
- No solution

SMTO solver
(X, 0,-¢{f = f*}, 0)

Solution f

We also pass the assignment model back from the
SMTO solver as a constraint

47

Solving SyMO

Constraints used to guide synthesis phase

Synthesis UNSAT
- No solution
1f.B
— SAT
p £
Call additional oracles
P | sat

SMTO solver UNSAT Solut
(X, 0,~¢1f > [*}. 0) e

48

Solving SyMO

Constraints used to guide synthesis phase

Synthesis

—

p £
Call additional oracles

P | sar

SMTO solver UNSAT
Solution f

(X, 0,~{f = f*}, 0)

Note: /* is guaranteed to satisfy B so the SMTO
solver doesn’t need to consider B

Thus definitional SMTQ!

49

Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation

50

Find a function that transforms Cat A into Cat B?

df.Vx.corr(f)

Oracle:

- Load image (z; :int, z, : int, 73 : int)
- Compile f
:Bgen :f(zl) Y

- Apply f to all pixels
- Output image Aoy - COTT(f*) = 23

f*:int — int

51

SMTO solver
(%, 6,~plf = f*}, 0)

52

SMTO solver
(%, 6,~plf = f*}, 0)

53

SMTO solver
(%, 6,~plf = f*}, 0)

a : corr(0) = false

pf22) =

54

; corr(1)

" A corr(0) false

" AF(122) =

a : corr(0) = false

pf22) =

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

99

; corr(1)

" A corr(0) false
Af(122) =

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

56

; corr(1)

. T A corr(0) false
T ASf(122) =

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

a . corr(122) = false
p:f(141) =114

@ . corr(f)

A: T Acorr(0) = false A corr(122) = false
B: TAf(122)=0Af(141)=114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

a . corr(122) = false
p:f(141) =114

58

@ . corr(f)

A: T Acorr(0) = false A corr(122) = false

B: T Af(122) =

0Af(141) = 114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

%1255 @ x

59

@ . corr(f)

A: T Acorr(0) = false A corr(122) = false

B: T Af(122) =

0Af(141) = 114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

%1255 @ x

60

@ : corr(f)

A: T Acorr(0) = false A corr(122) = false
B: TAf(122)=0Af(141)=114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

a : corr(255 @ x) = true JFr255@x

g f(141) =114

@ . corr(f)

A: T Acorr(0) = false A corr(122) = false
B: TAf(122)=0Af(141)=114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

Solution!
f*:255dx

62

Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation

63

64

Case studies

Approximate model

Problem Delphi (oracles) CVC5 (no oracles)

S

Images

Control
stability
Control
safety
PBE

<0.5s
12 9 <0.5s 5 2.2S

https://github.com/polgreen/delphi
https://github.com/polgreen/oracles

SyGuS-IF extension

* Syntax for declaring oracle constraints, oracle assumptions
and oracle functions

(OracleCmd)

(oracle-assume ((SortedVar)") ((SortedVar)™) <Te’rm> (Symbol))
(oracle-constraint ((S()rtedVa/r)*) (<S0rtedVa7“>) (Term) (Symbol))
(declare-oracle-fun (Symbol) ({(Sort)™) (Sort) (Symbol))
(oracle-constraint-io (Symbol) (Symbol))

(oracle-constraint-cex (Symbol) (Symbol))
(oracle-constraint-membership (Symbol) (Symbol))
(oracle-constraint-poswitness (Symbol) (Symbol))
(oracle-constraint-negwitness (Symbol) (Symbol))
(declare-correctness-oracle (Symbol) (Symbol))
(declare-correctness-cex-oracle (Symbol) (Symbol))

https://github.com/SyGuS-Org/docs

65

Conclusion

Defined oracle interfaces, grouping responses into
assumptions and constraints

Presented algorithms for SMTO and SyMO

Performs synthesis with complex oracles without building
new solvers

66

Conclusion
Oracles can be (almost) anything!
* Must be able to say “yes” or “no” for correctness
* Must provide semantic guidance to the learner

e (Can be used with traditional SMT constraints

Do you have oracles? Talk to us!
elizabeth.polgreen@ed.ac.uk

\,‘
ajreynolds@gmail.com :
sseshia@berkeley.edu '

67

mailto:sseshia@berkeley.edu
mailto:ajreynolds@gmail.com

