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Find a function that transforms Cat A into Cat B?

Can | use program synthesis?
df.f(CatA) = CatB




Find a function that transforms Cat A into Cat B?

- Load image
- Compile f

- Apply f to all pixels
- Output image

f(pixel value, location)

df Vpixels, locs . f(CatA(loc), loc) = CatB(loc)




Find a function that transforms Cat A into Cat B?

Can | use program synthesis?

Give all pixels input-output examples prior to solving?
d7.7(122,0) = 141 A ... Af(133,65536) = 144

uild a new solver?



Find a digital controller K for this LTI system?

Can | use program synthesis?

1k . Stable(A — Bk) A Vx . Safe(x)

! PROBLEM !!

We tried this!
- Verifier needs to find eigenvalues
- Extremely non-linear

Do | need to build a new solver?



Automated formal synthesis of provably safe digital
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Alessandro AbateZ(’ - lury Bessa3(") - Lucas Cordeiro®(" - Cristina David>() -
Pascal Kesseli®() - Daniel Kroening?( - Elizabeth Polgreen’

Increase Unfolding Bound

Increase Precision

VERIFY

: . PASS
L.SYNTHESIZE | s\ 2.SAFETY 3.PRECISION 4.COMPLETE 3—>

ry L N Y NN N T

UNSAT/ Inputes NSAT/ Kk T/F K T/F
K model

Y

Y Fixed .
BMC-based bxed-point Completeness

Verifier Arithmetic Verifer
Verifier

statig executable executable
constraints

Y
Program Search




Find prime factors of a number?

L= (S )

Can | use SMT?
af,, > . isPrime(f)) A isPrime(f)) Af; *f, =x

Do | need to build a new solver?



Why don’t off-the-shelf solvers work?

e Parts are hard to model with static constraints e.qg., the image
processing library.

* Parts are hard to reason about e.g., eigenvalues, primes.

* Too many constraints, which ones are important? e.g., which
pixels matter?

q Solution: Use executable “oracles”



Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation



What is an oracle?

Query
Is this number prime?

Response

No, it is not prime.

\

v \
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Existing use of oracles:

e EXisting synthesis algorithms are using oracles!
e Jha and Seshia[1] set out the theory behind this.

e Qur contribution: defining satisfiability/synthesis modulo
oracles problem and proposing a unifying algorithm

[1] A theory of formal synthesis via inductive learning - Jha and Seshia
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Existing use of oracles:

* Counterexample Guided Inductive Synthesis [2]

[ SYNTHESIZE J—‘ No
Solution

Query f* ]cex © X
L 4

Is my program “x + 5” correct?
VERIFY Solution

%

[2] Combinatorial sketching for finite programs - Solar Lezama et al
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Existing use of oracles:

o CEGIS(T) [3]

e |ICE learning [4]

Is my program “x + 5” correct?
Is my invariant

%
X Ct? & \ w\;@

[3] Counterexample Guided Inductive Synthesis modulo Theories - Abate et al
[4] ICE: A robust framework for learning invariants - Garg et al
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Existing use of oracles:

* Program lifting [5]

Is my program correct?

TR

[5] Program Lifting using Gray-Box Behavior - Collie et al
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Examples

People use oracles, but they build their own custom solver.
Why?

e Solver needs custom information about the oracles (what
does the response from the oracle mean?)

What if we could communicate this information to an off-
the-shelf SMT or SyGuS solver?

15



Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation
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What is an oracle?

* We define how the oracle is queried by defining an interface

Query

'y :query domain
Z

. response co-domain

17



What is an oracle?

* We define how the oracle is queried by defining an interface

Query . query domain
\ . response co-domain
gen - ASSUMPLION generator

sen - CONStraint generator

* and assumption and constraint generators, which generate:
- assumptions the solver is allowed to make
- and constraints the solver must abide by

18



Example oracle: O

Is this number y prime?

\

: (v : integer)
. (z: bool)

ven - Prime(y) =z
en @

8

prime

Solve: Jx.prime(x) A(x%2 = 1)
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Example oracle: 0,

s this number y prime? Solve: dx.prime(x) A (x%2 = 1)

Okay, now | know | can assume
prime(l) = false

. (v : integer)

. (z : bool) '@
gen - prime(y) = z

en + O

8
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Example oracle: @positive—wimess

Is my program f*
correct?

K

: (f* @ int — int)
2 (g7 1 int, 2, @ int)
. &

en

gen - f(z) = 2




Example oracle: @positive—wimess

Is my program f* Jr=x+1

5. it

Okay, now | know that a valid
proaram f must satisfy f(7) = 13

: (f* 1 int — int)

: (Zl . int,Zz . lnt)

en' O
gen : f (ZZ) — <3




Oracle function symbols

Is this number y prime?

J
\
An oracle function symbol is a

symbol whose behaviour is defined
to be the same as an external
oracle.

Note: oracle must be functional

: (v : integer)
. (2 : bool)

prime is an oracle function symbol

een - PTIMe(y) = 2
gen 2%
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Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation
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Satisfiability Modulo Theories and Oracles (SMTO)

An SMTO problem is a tuple:
f :aset of ordinary function symbols

@ : a set of oracle function symbols
p :aformulain a background theory
0)

: a set of oracle interfaces

{fpfz} : (v : integer)
: (z: bool)

: prime(f;) A prime(f,) A (f; *f, = 24) gen * Prime(y) =z

20, gen " 1%

Is this satisfiable? What is a valid assignment to f; and f,?
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Satisfiability Modulo Theories and Oracles (SMTO)
0

prime
SAT? : (y : integer)
. ) : (z2: bool)
prime(f,) A prime(fy) A (f; *f, = 24) 1 prime(y) = z

en:g

8

e If prime does what we expect, then yes! But we don’t know
that

* |f we haven’t called the oracle, an assignment must work for
ALL possible behaviours of prime

o« When we call © we get assumptions about prime

prime’

e |f the assumptions rule out all possible assignments: UNSAT

20
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Satisfiability Modulo Theories and Oracles (SMTO)
0

prime

SAT? : (v : integer)

. ) : (z2: bool)
prime(f;) A prime(f;) A (f; *, = 24) 2 prime(y) =z

en:g

8

Conjunction of assumptions. True if no assumptions

/

Satisfiable iff 3f,, f,.Vprime A = p is satisfiable
Unsatisfiable iff f,, f, . dprime . A A p is unsatisfiable

Unknown otherwise
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Satisfiability Modulo Theories and Oracles (SMTO)
0

prime

SAT?

prime(f,) A prime(f,) A (f; *f, = 24)

: (v : integer)

: (z; : bool, z, : integer)
en t DYime(y) =z

Poen: 1 < 22

—
Y

4

a

Constraints must be obeyed by the solver: Conjunction of
constraints. True if no

/ constraints.

Satisfiable iff Af, f, . Vprime .A = (p A B) is satisfiable

Unsatisfiable iff 3f;, f, . dprime .A A p A B is unsatisfiable

Unknown otherwise



Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

START

UNKNOWN SAT
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Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate assumptions

M

UNKNOWN SAT
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Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate assumptions

UNKNOWN SAT
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Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate constraints

UNKNOWN SAT
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Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate assumptions

UNKNOWN SAT

CONFLICTING ASSUMPTIONS!
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Satisfiability Modulo Theories and Oracles (SMTO)

Satisfiable iff Af;, f,.Vprime.A = (p A B) is satisfiable
Unsatisfiable iff 3f,, f, . Aprime .A A p A B is unsatisfiable
Unknown otherwise

Generate constraints

UNKNOWN SAT

CHANGEABLE RESULT!!

34



Definitional
Satisfiability Modulo Theories and Oracles (SMTO)

A definitional SMTO problem is a tuple:
. a set of ordinary function symbols

: a formula in a background theory

/
@ : a set of oracle function symbols
P,
@

: a set of oracle interfaces

And:
e All oracle interfaces define oracle functions

* There are no constraint generators

—> No conflicting assumptions (only functional oracles)
— No changeable results (no constraints)

35



Coming up
e EXxisting use of oracles

e Formal definition of oracle interfaces

e SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

e Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

e More cat pictures

* Prototype evaluation

36



Solving (definitional) SMTO

Satisfiable iff Af, f, . Vprime .A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

SMT solver

model

UNSAT

assumptions

Oracle Consistency

37



Solving (definitional) SMTO

Satisfiable iff Af, f, . Vprime .A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

UNSAT

SMT solver

model

assumptions

Oracle Consistency

A « tTrue
while (true)
{
if (pAA) is UNSAT.
return UNSAT
else
1f (model consistent with Eﬂ
return SAT
else
conjoln assumptions to A




Solving (definitional) SMTO

Satisfiable iff Af, f, . Vprime .A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

UNSAT

SMT solver

model

assumptions

Oracle Consistency

A « tTrue
while (true)
{
if (pAA) 1s UNSAT.
return UNSAT
else
1f (model consistent with Eﬂ
return SAT
else
conjoln assumptions to A




Solving (definitional) SMTO

Satisfiable iff 3f,, /, . Vprime.A = p is satisfiable

Unsatisfiable iff 3f;, f, . dprime . A A p is unsatisfiable

UNSAT

SMT solver

model

assumptions

Oracle Consistency

A « tTrue
while (true)
{
if (pAA) is UNSAT.
return UNSAT
else
1f (model consistent with Eﬂ
return SAT
else
conjoln assumptions to A




Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation
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J,
0
VX
4]

¢ Vx.corr(f) A f(x) < 256

Synthesis Modulo Oracles (SyMO)

A SyMO problem is a tuple:
. a tuple of functions to synthesise

f
0 . a set of oracle function symbols
VX

¢ :aformulain a background theory,
where ¢ is quantifier-free

: a set of oracle interfaces

corr

y = (f*:int — int)

Z : (Zl . BOOZ,Zz . lnt,Z3 . lnt)
o en

—

Vg

: {corr}

: corr(f*) =z,

ﬂgen : f(ZZ) — 43

8

{0

COI"I"}

What is a valid f ?

42



Synthesis Modulo Oracles (SyMO)

What is a valid f ?

Vx.¢:Vx.corr(f) A f(x) < 256

f is VALID if there is no x such that ¢ is false
i.e., if the SMTO problem (X, 5), —.¢{f — ]‘_>’:}, 5) is UNSAT

f is INVALID if there is an x such that ¢ is false
.e., if the SMTO problem (X, @, —p{f — %), O) is SAT
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Synthesis Modulo Oracles (SyMO)

A SyMO problem is a tuple:
f - a tuple of functions to synthesise

. a set of oracle function symbols

0
VX . ¢ :aformulain a background theory,
where ¢ is quantifier-free

: a set of oracle interfaces

And:

* All assumption generators define oracle
function symbols

e All oracles are functional

— checking 7 is valid is now definitional SMTO

44



Coming up
e EXxisting use of oracles

e Formal definition of oracle interfaces

e SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

e Synthesis with oracles (SyMO):
- when are solutions correct
* - unifying algorithm for solving

e More cat pictures

* Prototype evaluation

45



Solving SyMO

Constraints used to guide synthesis phase

Synthesis

46



Solving SyMO

Constraints used to guide synthesis phase

Synthesis
1f.B

UNSAT
- No solution

SMTO solver
(X, 0,-¢{f = f*}, 0)

Solution f

We also pass the assignment model back from the
SMTO solver as a constraint

47



Solving SyMO

Constraints used to guide synthesis phase

Synthesis UNSAT
- No solution
1f.B
— SAT
p £
Call additional oracles
P | sat

SMTO solver UNSAT Solut
(X, 0,~¢1f > [*}. 0) e

48



Solving SyMO

Constraints used to guide synthesis phase

Synthesis

—

p £
Call additional oracles

P | sar

SMTO solver UNSAT
Solution f

(X, 0,~{f = f*}, 0)

Note: /* is guaranteed to satisfy B so the SMTO
solver doesn’t need to consider B

Thus definitional SMTQ!

49



Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation
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Find a function that transforms Cat A into Cat B?

df.Vx.corr(f)

Oracle:

- Load image (z; :int, z, : int, 73 : int)
- Compile f
:Bgen :f(zl) Y

- Apply f to all pixels
- Output image Aoy - COTT(f*) = 23

f*:int — int

51




SMTO solver
(%, 6,~plf = f*}, 0)
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SMTO solver
(%, 6,~plf = f*}, 0)
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SMTO solver
(%, 6,~plf = f*}, 0)

a : corr(0) = false

pf22) =

54



; corr( 1)

" A corr(0) false

" AF(122) =

a : corr(0) = false

pf22) =

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

99



; corr( 1)

" A corr(0) false
Af(122) =

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)
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; corr( 1)

. T A corr(0) false
T ASf(122) =

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

a . corr(122) = false
p:f(141) =114




@ . corr(f)

A: T Acorr(0) = false A corr(122) = false
B: TAf(122)=0Af(141)=114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

a . corr(122) = false
p:f(141) =114
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@ . corr(f)

A: T Acorr(0) = false A corr(122) = false

B: T Af(122) =

0Af(141) = 114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

%1255 @ x
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@ . corr(f)

A: T Acorr(0) = false A corr(122) = false

B: T Af(122) =

0Af(141) = 114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

%1255 @ x
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@ : corr(f)

A: T Acorr(0) = false A corr(122) = false
B: TAf(122)=0Af(141)=114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

a : corr(255 @ x) = true JFr255@x

g f(141) =114




@ . corr(f)

A: T Acorr(0) = false A corr(122) = false
B: TAf(122)=0Af(141)=114

Synthesis
1f.B

SMTO solver
(%, 6,~plf = f*}, 0)

Solution!
f*:255dx
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Coming up
Existing use of oracles

Formal definition of oracle interfaces

SMT with oracles (SMTO):
- when is it satisfiable/unsatisfiable
- algorithm

Synthesis with oracles (SyMO):
- when are solutions correct
- unifying algorithm for solving

More cat pictures

Prototype evaluation
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Case studies

Approximate model

Problem Delphi (oracles) CVC5 (no oracles)

S

Images

Control
stability
Control
safety
PBE

<0.5s
12 9 <0.5s 5 2.2S

https://github.com/polgreen/delphi
https://github.com/polgreen/oracles



SyGuS-IF extension

* Syntax for declaring oracle constraints, oracle assumptions
and oracle functions

(OracleCmd)

(oracle-assume ((SortedVar)") ((SortedVar)™) <Te’rm> (Symbol) )
(oracle-constraint ((S()rtedVa/r)*) (<S0rtedVa7“> ) (Term) (Symbol) )
(declare-oracle-fun (Symbol) ({(Sort)™) (Sort) (Symbol) )
(oracle-constraint-io (Symbol) (Symbol) )

(oracle-constraint-cex (Symbol) (Symbol) )
(oracle-constraint-membership (Symbol) (Symbol) )
(oracle-constraint-poswitness (Symbol) (Symbol) )
(oracle-constraint-negwitness (Symbol) (Symbol) )
(declare-correctness-oracle (Symbol) (Symbol) )
(declare-correctness-cex-oracle (Symbol) (Symbol) )

https://github.com/SyGuS-Org/docs
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Conclusion

Defined oracle interfaces, grouping responses into
assumptions and constraints

Presented algorithms for SMTO and SyMO

Performs synthesis with complex oracles without building
new solvers
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Conclusion
Oracles can be (almost) anything!
* Must be able to say “yes” or “no” for correctness
* Must provide semantic guidance to the learner

e (Can be used with traditional SMT constraints

Do you have oracles? Talk to us!
elizabeth.polgreen@ed.ac.uk

\,‘
ajreynolds@gmail.com :
sseshia@berkeley.edu '
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