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Model checking of

systems with full models is ..but complete

well established ...

accurate models are
HARD to get.

What can we do
with a partial model?




Suppose we have and

we are given a

a system, a limited amount of

partial model, system-generated

data
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Can we check the system
satisfies a PCTL property?



Related work: “white-box” model checking

Explicit model checking: evaluate all possible paths
in the model
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Proves that the model

satisfies property

Relies on the model being

correct and complete



Related work: “white-box” model checking

Symbolic model checking: reason about all

possible paths in the model
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Relies on the model being

correct and complete



Related work: “white-box” model checking

Statistical Model Checking (SMC): generate
sample data from the model

So S1 .53 52 So So S151

So So S1 51 53S0 5151

So S1 53S0 S0 515151

S0 515352 S0 S0 5151




Related work: “white-box” model checking

Statistical Model Checking (SMC): generate
sample data from the model

Gives probability that the
model satisfies property, for

BIG models

Relies on the model being

correct and complete



Related work: “black-box” model checking

Statistical Model Checking (SMC): collect sample
data from the system




Related work: “black-box” model checking

Statistical Model Checking (SMC): collect sample
data from the system

Gives probability that
system satisfies property.

Needs a lot of data.




Our approach:

Consider a scenario with limited data, so we can't
use ‘'black-box’ SMC,

and only a partial model, so we can't use
“white-box" model checking.

We combine parameter synthesis + data-based learning to
compute the confidence the system satisfies a property.
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Overview

i
limited data 4-| System |-} partial model || property
i

Bayesian inference Parameter synthesis

Compute confidence in
system satisfying property
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Parametric Markov chains

initial state atomic propositions

S = finite set of states labelling function

AN e

Mo = (5, Ty, tinit, AP, L, 0)

e

T = parameterised transition function O = set of all possible valuations of 0
6 = parameter vector

basic pMC

Basic pMC - transition probabilities are known
constants or single parameters
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Parametric Markov chains

initial state atomic propositions

S = finite set of states labelling function

AN e

Mo = (5, Ty, tinit, AP, L, 0)

e

T = parameterised transition function O = set of all possible valuations of 0
6 = parameter vector

linear pMC

Linear pMC - transition probabilities are linear
functions of parameters
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Overview

i
limited data 4-| System |-} partial model || property
i

Bayesian inference Parameter synthesis

Compute confidence in
system satisfying property
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PCTL properties \

We are able to consider any property that is compatible with

the PRISM parameter synthesis tool. We focus on non-
nested PCTL
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Overview
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limited data 4-| System |-} partial model || property
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Bayesian inference Parameter synthesis

Compute confidence in
system satisfying property

17



Parameter Synthesis

We use PRISM to synthesise the feasible set of parameters,
for which the model satisfies the property
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Overview
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Bayesian inference Parameter synthesis

Compute confidence in
system satisfying property
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Bayesian Inference: basic pMC

prior
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Bayesian Inference: basic pMC

prior

0bservec<ata /

plo; | D) = =L

1 — oy — Dzl S2
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Hence, updating posterior = adding transition
count to Dirichlet hyper-parameters

p(0 | D) =11, Dir(0s, | Ds;, + )
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Bayesian Inference: basic pMC

COUNT [1 - 6]

23

COUNT [6]]

4

p(0; | D)

Dir( ;| 5, 24)
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Combining posterior distributions

Note we can combine posterior distributions from multiple
identically parameterised transitions by summing the hyper-

parameters
New data

COUNT[1 - 6] 8

COUNT[1-6] 2
COUNT [6] 1 +

p(é’j) = Dir(Ds, + Ds, + a,)

COUNT [6]] 3
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Combining posterior distributions

Note we can combine posterior distributions from multiple
identically parameterised transitions by summing the hyper-
parameters

New data
COUNT[1-6] 2 I COUNT [1-6;] 8
COUNT [6j] COUNT [6] 3

D1r (Ds, + Ds, + 0481)

Posterior

COUNT [1 - 6] 10

COUNT[6;] 4
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Overview
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Bayesian inference Parameter synthesis

Compute confidence in
system satisfying property
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Confidence Calculation: basic pMC

EESN - /., 20| D)0
—

Oy ={0 € 60:M(0) = ¢}

p(0; | D)

Note: we use

simple Monte
Carlo to compute
the integral.

j=1
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Overview

i
limited data 4-| System |-} partial model || property
i

What about linear pMCs?

Bayesian inferenc ameter synthesis

Compute confidence in
system satisfying property
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Markov chain expansion

What if a parameter appears multiple times in a linear pMC, in
different linear equations? How do we combine the posterior
distributions?
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Markov chain expansion

We “expand’ the transitions with linear parameterisation, to turn
the MC into a basic pMC. i.e., transitions have only one parameter.

oo
1 - kix
-k2B

29



Markov chain expansion

We “expand’ the transitions with linear parameterisation, to turn
the MC into a basic pMC. i.e., transitions have only one parameter.
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Hidden Data

We now have a data set with gaps in. We know the transitions
counts only for the original transitions.
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Hidden Data

We apply Bayes' rule
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p(0|D) = 2. p-ep-p (0|D%) P(D*|D)

set of all possible completions of the expanded data



Hidden Data

We use sampling to obtain a realisation of the posterior
distribution, without evaluating the integral

p(0|D) = 2 p-ep- p(0|D) P(D*[D)
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Overview
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Confidence Calculation
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Case Study

We run our approach over linear and basic parametric Markov
chains, with a range of parameter values.

We implement a simple “black-box" statistical model checking
algorithm for comparison
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Case Study

For our pMC and property: Oy, = [0.5,1]

We compute a mean squared error (MSE):

number of experiments

i-th run P(My

v _J0 if6<05
frue =Y 1 if 6 > 0.5,
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Case Study

“Black-box” SMC

0.7

our approach

Data made up of traces of
length 10

“Black-box” SMC
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Data made up of traces of
length 100
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Case Study

Our approach produces more accurate results with less data

We use information more efficiently: for SMC a “unit” of
information is one trace: for us a “unit’ of information is one
parameterised transition
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Next steps

Integration of alternative parameter synthesis techniques
Non-linearly parameterised Markov chains
External non-determinism (parameterised MDPs)

Addition of Bayesian hypothesis testing
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Conclusions

- We presented a data-based verification approach

- Addresses model-checking with partial models and limited
data

Promises greater accuracy than black-box SMC
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