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Model checking of 
systems with full models is 

well established …
…but complete, 

accurate models are 
HARD to get.

What can we do 
with a partial model?
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Suppose we have 
a system, we are given a 

partial model,
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and 
a limited amount of 
system-generated 

data

Can we check the system 
satisfies a PCTL property?
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Explicit model checking: evaluate all possible paths 
in the model

Proves that the model 
satisfies property 

Relies on the model being 
correct and complete

Related work: “white-box” model checking
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out

Symbolic model checking: reason about all 
possible paths in the model

Proves that the model 
satisfies property 

Relies on the model being 
correct and complete

Related work: “white-box” model checking
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Statistical Model Checking (SMC): generate 
sample data from the model
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Statistical Model Checking (SMC): generate 
sample data from the model

Related work: “white-box” model checking

Gives probability that the 
model satisfies property, for 
BIG models 

Relies on the model being 
correct and complete
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Related work: “black-box” model checking

Statistical Model Checking (SMC): collect sample 
data from the system
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Gives probability that 
system satisfies property. 

Needs a lot of data. 

Related work: “black-box” model checking
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Statistical Model Checking (SMC): collect sample 
data from the system



Our approach:

We combine parameter synthesis + data-based learning to 
compute the confidence the system satisfies a property. 

Consider a scenario with limited data, so we can’t 
use “black-box” SMC,

and only a partial model, so we can’t use 
“white-box” model checking.
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Overview

Compute confidence in 
system satisfying property

Bayesian Inference Parameter synthesis

partial modellimited data System property

Bayesian inference

"11



Overview

Compute confidence in 
system satisfying property

partial modellimited data System property

"12

Bayesian inference Parameter synthesis



Parametric Markov chains

Basic pMC -  transition probabilities are known 
constants or single parameters
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.
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2 Background

2.1 Parametrised Markov chains – syntax and semantics

Let S be a finite, non-empty set of states representing all possible configura-
tions of the system being modelled. A discrete-time Markov chain (DTMC) is a
stochastic time-homogeneous process over this set of states [1], as follows.

Definition 1 A discrete-time Markov chain M is a tuple (S,T, ◆init,AP, L),
where S is a finite, non-empty set of states, T : S ⇥ S ! [0, 1] is the transition
probability function such that for 8s 2 S :

P
s02S T(s, s0) = 1. The function

◆init : S ! [0, 1] denotes an initial probability distribution over the states S,
such that

P
s2S ◆init(s) = 1. The states in S are labelled with atomic propositions

a 2 AP via the labelling function L : S ! 2AP.

Consider the evolution of a Markov chain over a time horizon t = 0, 1, . . . , Nt,

with Nt 2 N. Then an execution of the process is characterised by a state
trajectory given as {st|t = 0, 1, . . . , Nt}. The transition function T(s, s0) specifies
for each state s the probability of moving to s

0 in one step, and hinges on the
Markov Property, which states that the conditional probability distribution of
the future possible states depends only on the current state, namely P(s0 = st+1 |
st, ...s0) = P(s0 = st+1 | st). Furthermore, the definition of M requires T is time
homogeneous, that is P(s0 = st+1 | st = s) = P(s0 = st | st�1 = s), 8t 2 N. The
model is extended with (internal) non-determinism in order to express lack of
complete knowledge of the underlying system.

Definition 2 A discrete-time Parametric Markov chain is defined as a tuple
M⇥ = (S,T✓, ◆init,AP, L,⇥) where S, ◆init,AP, L are as in Definition 1. The
entries in T✓ are specified in terms of parameters, collected in a parameter vector
✓ 2 ⇥, where ⇥ is the set of all possible evaluations of ✓. Each evaluation gives
rise to an induced Markov chain M(✓).

Note we require a certain type of well-posedness of the parameterisation, we
demand 8s 2 S, 8✓ 2 ⇥ :

P
s02S T✓(s, s0) = 1. More precisely, any ✓ 2 ⇥, induces

a Markov chain M(✓) where the transition function T✓ can be represented by a
stochastic matrix. Note also, we assume a distribution on the parameters of the
model.

We considered two types of parameterised Markov chain. We use the first,
simpler type, as a base case to build the method for the more complex linearly
parameterised Markov chains.

1. basic parameterised Markov chains with independently parameterised tran-
sition probabilities. Consider M⇥ = (S,T✓, ◆init,AP, L,⇥) with ⇥ ✓ [0, 1]n

and parameter vector ✓ := (✓1, . . . , ✓n) 2 ⇥ build up based on individual
parameters ✓i 2 [0, 1]. Then the parameterised MC is considered basic if
transition probabilities between states are either known and considered con-
stant with a value in [0, 1], or have a single parameter ✓i (or 1�✓i) associated
to them and 8s 2 S, 8✓ 2 ⇥ :

P
s02S T✓(s, s0) = 1 (cf. Fig. 1, left).
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tions in Sec. 5.2, where we show data obtained from a linearly parameterised
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hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.
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such that

P
s2S ◆init(s) = 1. The states in S are labelled with atomic propositions

a 2 AP via the labelling function L : S ! 2AP.
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s02S T✓(s, s0) = 1. More precisely, any ✓ 2 ⇥, induces

a Markov chain M(✓) where the transition function T✓ can be represented by a
stochastic matrix. Note also, we assume a distribution on the parameters of the
model.

We considered two types of parameterised Markov chain. We use the first,
simpler type, as a base case to build the method for the more complex linearly
parameterised Markov chains.

1. basic parameterised Markov chains with independently parameterised tran-
sition probabilities. Consider M⇥ = (S,T✓, ◆init,AP, L,⇥) with ⇥ ✓ [0, 1]n

and parameter vector ✓ := (✓1, . . . , ✓n) 2 ⇥ build up based on individual
parameters ✓i 2 [0, 1]. Then the parameterised MC is considered basic if
transition probabilities between states are either known and considered con-
stant with a value in [0, 1], or have a single parameter ✓i (or 1�✓i) associated
to them and 8s 2 S, 8✓ 2 ⇥ :

P
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Fig. 1: Two parameterised Markov chains. The nodes of the graph represent
states. The labels over the edges provide the probability of taking a transition.
The left graph gives parameterised MC with a basic parameterisation, where
the parameters ✓1, ✓2 are encompassed in the vector ✓ = (✓1, ✓2) 2 ⇥ = [0, 1]2.
The right graph has a linear parameterisation, characterised by a�ne functions
g1,2 : ✓ 7! [0, 1].

2. linearly parameterised Markov chains, where unknown transition probabil-
ities can be linearly related. Given ⇥ ✓ [0, 1]n and parameter vector ✓ :=
(✓1, . . . , ✓n) 2 ⇥ with ✓i 2 [0, 1], the parameterised MC is considered lin-
early parameterised if there exists a set of a�ne functions gl(✓) := k0 +
k1✓1 + ... + kn✓n with ki 2 [0, 1] and

P
ki  1, denoted gl(✓)l2L. All

outgoing transition probabilities of states (or, graphically labels of out-
going edges of a node, cf. Fig.1) have probability gl(✓) or 1 � gl(✓) and
8s 2 S, 8✓ 2 ⇥ :

P
s02S T✓(s, s0) = 1 .

The basic case leads to simple procedures, and in Section 5 we develop the
linear structure for Bayesian verification. Parameterisations beyond these two
categories, such as non-linear ones, are out of the scope of this paper.

2.2 Properties – Probabilistic Computation Tree Logic

We consider system requirements specified in probabilistic logics. As we leverage
PRISM’s parametric model checking tool [10] for synthesis, we can consider
the set of properties supported by the synthesis tool: non-nested Probabilistic
Computational Tree Logic (PCTL) [1] formulae. For instance, P�0.5(stay U get)
expresses the property “the probability of remaining in a state labelled with
atomic proposition ‘stay’ until we reach a state labelled as ‘get’, is bigger or
equal to 0.5”. PRISM also supports nested PCTL with some restrictions, and a
planned extension to this work is to use PROPHESY [8] for parameter synthesis,
which supports conditional probabilities and unbounded-time properties. We
next define PCTL in nexus to finite discrete-time Markov chains:

Definition 3 Let a discrete-time Markov chain be given. Let � be a formula
interpreted over states s 2 S, and ' be a formula interpreted on paths of the
DTMC. Also, let ./2 {<, , �, >}, n 2 N, p 2 [0, 1], c 2 AP . The syntax of
PCTL is given by:

� := True | c | � ^ � | ¬� | P./p('), ' := �� | � U �.
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PCTL properties

We are able to consider any property that is compatible with 
the PRISM parameter synthesis tool. We focus on non-
nested PCTL
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Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

"18
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
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data is gathered, we analytically update the posterior probability distribution
p(✓j | D) by updating the parameters of a Dirichlet distribution.

This result can be extended to the case of a state sl with m > 2 outgoing
transitions. We parameterise the outgoing transitions with the sub-vector ✓sl =
(✓1, ..., ✓m�1) and 1 � ✓1 � ... � ✓m�1, and obtain the posterior for the sub-
vector, p(✓sl | D). The likelihood function takes the form of an m-dimensional
multinomial distribution, and we express the prior as anm-dimensional Dirichlet.

This yields a posterior distribution as an m-dimensional Dirichlet distribu-
tion, p(✓sl |D) = Dir(✓sl | Dsl + ↵).

The posterior distribution for the entire parameter vector p(✓ | D) is equal to
the product of the posterior distributions for the sub-vectors of ✓. This holds due
to the stated independence of the parameters in a basic parameterised Markov
chain, which results in independent priors and independent likelihood functions.
Hence p(✓ | D) =

Q
si
Dir(✓si | Dsi + ↵).

Transition grouping. For simplicity, given a state with multiple outgoing
transitions we may obtain the distribution for each parameter using marginal
distributions. Consider state sl with m > 2 outgoing transitions, parameterised
with the sub-vector ✓sl = (✓1, ..., ✓m�1) and 1� ✓1 � ...� ✓m�1 We have shown
earlier that, if the parameters are independent, the joint posterior distribution
over the transition probabilities for this state is an m-dimensional Dirichlet:
p(✓sl |D) = Dir(✓sl | Dsl +↵). The marginal distribution of ✓i is a 2-dimensional
Dirichlet, or a beta distribution, ✓i ⇠ Dir(↵i, (

Pm
i=1 ↵i) � 1). We can hence

obtain a posterior distribution for each parameter, by e↵ectively grouping the
training data together for all transitions except the one we obtain the posterior
distribution for.

5.2 Linearly parameterised Markov chains

In this section we build on the Bayesian inference for basic parameterisations
and tackle linearly parameterised Markov chains. As defined before, in a linear
parameterised Markov chain, the transition probabilities will be expressed in
the form g(✓) = k0 + k1✓1 + ... + kn✓n. For a given data set D and a linearly
parameterised Markov chain we want to use Bayesian inference to get the poste-
rior distribution p (✓|D) over the parameter set ⇥. In order to work with linear
parameters we introduce two types of transformations of the Markov chain. In
the first, we consider a compression of the data. When two states of the DTMC
have “similar” transitions, what can be learned is equivalent. These states are
referred to as being parameter similar and will be introduced more precisely
in the following. Next we show that, by introducing additional, non-observed
states, into the Markov chain and the data, the linear parameterised Markov
chain can be transformed to a basic Markov chain with unobserved states (and
hidden data). After these transformations we can apply the Bayes rule over the
expanded Markov chain and hidden data.
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sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.
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Combining posterior distributions

Note we can combine posterior distributions from multiple 
identically parameterised transitions by summing the hyper-
parameters

9

Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L

⇤
,⇥), both over set ⇥. We say M⇤

⇥ is an expan-
sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
init. The extended labelling map L

⇤ is a trivial extension of L,
assigning labels L(s) for s 2 S and an empty label to S

⇤ \ S.
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Combining posterior distributions

Note we can combine posterior distributions from multiple 
identically parameterised transitions by summing the hyper-
parameters

9

Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L

⇤
,⇥), both over set ⇥. We say M⇤

⇥ is an expan-
sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
init. The extended labelling map L

⇤ is a trivial extension of L,
assigning labels L(s) for s 2 S and an empty label to S

⇤ \ S.
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Confidence Calculation: basic pMC

12

Algorithm 1 Markov chain expansion (M⇥)

M⇤
⇥  M⇥

for all si 2 S⇤ do . Case I: transition splitting
for all T⇤

✓(si, sj) = k0 +
P

l2L kl✓l do
S⇤  {s⇤ij,l}l2L [ sij,0
T⇤

✓(si, sj) := 0
T⇤

✓(si, s
⇤
ij,0) := k0 and T⇤

✓(s
⇤
ij,0, sj) := 1

for all l 2 L do
T⇤

✓(si, s
⇤
ij,l) := kl✓l and T⇤

✓(s
⇤
ij,l, sj) := 1

for all si 2 S⇤ do . Case II: state splitting
if 9sk 2 S⇤ : T⇤

✓(si, sk) = 1� k0 �
P

l2L kl✓l then
T⇤

✓(si, sk) := 1� k0 �
P

l2L kl
for all T⇤

✓(si, sm) = kl✓l do
S⇤  s⇤m0

T⇤
✓(si, sm) := 0 , T⇤

✓(si, s
⇤
m0) := kl and T⇤

✓(s
⇤
m0 , sk) := 1� ✓l

T⇤
✓(s

⇤
m0 , sm) := ✓l

return M⇤
⇥ . return expanded DTMC

Definition 6. Given a PCTL specification �, a complete trace (sample trajec-
tory) D of the system S up to time t, and a transition function T, the confidence
S |= � can be quantified by Bayesian Inference as

P(S |= � | D) =
R
⇥ f�(✓)p(✓ | D)d✓. (4)

As we only consider the satisfaction of a property S |= � as a binary-valued
mapping from the space of parameters, the satisfaction function in (4), f� :
⇥ ! {0, 1}, (4) can be reformulated as:

P(S |= � |D) =
R
⇥�

p(✓ | D)d✓, (5)

where ⇥� denotes the set of parameters corresponding to models verifying the
property � (as generated by PRISM). Further, given the independent posterior
distributions for each parameter in ✓ resulting from Sec. 5.2, the confidence
can be computed as P(S |= � |D) =

R
⇥�

Q
✓i2✓ p(✓i | D)d⇥. The integral of a

Dirichlet distribution can be obtained by iterative or numerical methods: here we
use a simple Monte-Carlo approach, which depends on samples of the posterior
distribution as clarified in Algorithm 2.

7 Experiment results

We show our approach requires smaller amounts of data than statistical model
checking (SMC) to verify the system satisfies a given quantitative specification
up to a prescribed confidence level. We further claim our approach is more
robust than standard SMC in situations where only data of limited trace length
is available.

6

Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

θj = 1 θj = 0 

7

Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.

Note: we use 
simple Monte 
Carlo to compute 
the integral. 
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Markov chain expansion

What if a parameter appears multiple times in a linear pMC, in 
different linear equations? How do we combine the posterior 
distributions?
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We “expand” the transitions with linear parameterisation, to turn 
the MC into a basic pMC. i.e., transitions have only one parameter.

9

Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L⇤

,⇥), both over set ⇥. We say M⇤
⇥ is an expan-

sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
init. The extended labelling map L

⇤ is a trivial extension of L,
assigning labels L(s) for s 2 S and an empty label to S

⇤ \ S.

S0

S2

S1
k1α +k2β 

1 - k1α 
-k2β 
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Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

Markov chain expansion
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Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L⇤
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the MC into a basic pMC. i.e., transitions have only one parameter.
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Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised
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Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L⇤

,⇥), both over set ⇥. We say M⇤
⇥ is an expan-

sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
init. The extended labelling map L

⇤ is a trivial extension of L,
assigning labels L(s) for s 2 S and an empty label to S

⇤ \ S.
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uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised
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application of both state splitting cases (cf. Fig. 3b) induces again an expanded
parameterised Markov chain as per Def. 5.

Lemma 2. State splitting of M⇥ (Case II) generates an expansion of M⇥.

We are led to the following result.

Theorem 2. Any linearly parameterised Markov chain can be expanded into a
basic parameterised Markov chain by application of Lemma 1 and 2.

Bayesian inference with missing data We now consider Bayesian inference
on the newly expanded Markov chain M⇤

⇥. The data set D, which is sampled
from our system, corresponds to a state trajectory or set of trajectories over the
modelM⇥. This set further comprises only part of the corresponding trajectories
in the expanded model M⇤

⇥. For a given trajectory in D, we refer to D
⇤ as the

completed trajectory, and to D⇤ as the set of all possible completions D⇤. Note
the expanded parametric Markov chain has a basic parameterisation, hence for a
given completed data set D⇤ the Bayes rule as elaborated in (1) can be applied
to obtain p(✓|D⇤). For M⇤

⇥ Bayes rule can be applied over the hidden data as
follows:

p (✓|D) =

P
D⇤2D⇤ p (✓, D⇤

, D)

P(D)
=

P
D⇤2D⇤ p (✓|D⇤

, D)P(D⇤|D)P(D)

P(D)

=
P

D⇤2D⇤ p (✓|D⇤)P(D⇤|D).

Completed data sets have a multinomial distribution dependent on the parame-
terisation, hence the distribution of D⇤ is given as P(D⇤) =

R
⇥ P(D⇤|✓)p (✓) d✓.

For a given D the conditional distribution P(D⇤|D) is P(D⇤|D) = P(D⇤)/P(D),
with D

⇤ 2 D⇤ and P(D) =
P

D⇤

R
⇥ P(D⇤|✓)p (✓) d✓.

Remark 1. Realisations of the posterior can be obtained without computing the
entire integral as follows. A set of realisations ✓i for i 2 {1, . . . ,N} with proba-
bility density function p (✓|D) can be obtained by generating samples D

⇤
i with

distribution P(D⇤|D) and subsequently generating samples ✓i with distribution
p (✓|D⇤

i ) for all i 2 {1, . . . ,N}. These samples can then directly be used to per-
form the confidence calculation as in Sec. 6. ut

Algorithm 1 presents the state expansion procedure, and Algorithm 2 in the
next section summarises how to obtain a realisation of the posterior p(✓ | D⇤),
and to integrate it with the confidence computation.

6 Bayesian verification: computation of confidence

In this section we detail the final phase of our method: a quick procedure com-
putes a confidence estimate for the satisfaction of a PCTL specification formula
� by a system S of interest, namely S |= �. Our method takes as input a poste-
rior distribution over ⇥, obtained using Bayesian inference in Sec. 5.2, and the
feasible set for the parameters, obtained by parameter synthesis in Sec. 4.
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Algorithm 1 Markov chain expansion (M⇥)

M⇤
⇥  M⇥

for all si 2 S⇤ do . Case I: transition splitting
for all T⇤

✓(si, sj) = k0 +
P

l2L kl✓l do
S⇤  {s⇤ij,l}l2L [ sij,0
T⇤

✓(si, sj) := 0
T⇤

✓(si, s
⇤
ij,0) := k0 and T⇤

✓(s
⇤
ij,0, sj) := 1

for all l 2 L do
T⇤

✓(si, s
⇤
ij,l) := kl✓l and T⇤

✓(s
⇤
ij,l, sj) := 1

for all si 2 S⇤ do . Case II: state splitting
if 9sk 2 S⇤ : T⇤

✓(si, sk) = 1� k0 �
P

l2L kl✓l then
T⇤

✓(si, sk) := 1� k0 �
P

l2L kl
for all T⇤

✓(si, sm) = kl✓l do
S⇤  s⇤m0

T⇤
✓(si, sm) := 0 , T⇤

✓(si, s
⇤
m0) := kl and T⇤

✓(s
⇤
m0 , sk) := 1� ✓l

T⇤
✓(s

⇤
m0 , sm) := ✓l

return M⇤
⇥ . return expanded DTMC

Definition 6. Given a PCTL specification �, a complete trace (sample trajec-
tory) D of the system S up to time t, and a transition function T, the confidence
S |= � can be quantified by Bayesian Inference as

P(S |= � | D) =
R
⇥ f�(✓)p(✓ | D)d✓. (4)

As we only consider the satisfaction of a property S |= � as a binary-valued
mapping from the space of parameters, the satisfaction function in (4), f� :
⇥ ! {0, 1}, (4) can be reformulated as:

P(S |= � |D) =
R
⇥�

p(✓ | D)d✓, (5)

where ⇥� denotes the set of parameters corresponding to models verifying the
property � (as generated by PRISM). Further, given the independent posterior
distributions for each parameter in ✓ resulting from Sec. 5.2, the confidence
can be computed as P(S |= � |D) =

R
⇥�

Q
✓i2✓ p(✓i | D)d⇥. The integral of a

Dirichlet distribution can be obtained by iterative or numerical methods: here we
use a simple Monte-Carlo approach, which depends on samples of the posterior
distribution as clarified in Algorithm 2.

7 Experiment results

We show our approach requires smaller amounts of data than statistical model
checking (SMC) to verify the system satisfies a given quantitative specification
up to a prescribed confidence level. We further claim our approach is more
robust than standard SMC in situations where only data of limited trace length
is available.

6

Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised
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Algorithm 2 Monte-Carlo Integration for linearly parameterised DTMC

N := number of Monte-Carlo samples
{D⇤

i }i2{1,...,N} ⇠ p(D⇤|D) . hidden data samples
for all i 2 {1, ...,N} do

Compute p(✓|D⇤
i ) . Bayesian inference

✓i ⇠ p(✓|D⇤
i ) . posterior samples

j#  j# +Boolean[✓i 2 ⇥�]

P̂(S |= �) :=
j#
N

return P̂(S |= �) . estimate of P(S |= �)

Experiment setup We focus our experimental discussion on the basic parame-
terised Markov chainM⇥ in Figure 1 and the PCTL property � = P>0.5[¬s3 U s2].
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for our approach p(✓ | D) = Dir(1, 1), which, for property �, means p(M(✓) |=
�) = Dir(1, 1); for SMC we set p(M(✓) |= �) = Dir(1, 1). We run both methods
over empirical data obtained from M(✓), our “underlying system”, for values of
0 < ✓ < 1, i.e., di↵erent “underlying systems”, and compare the outcomes with
the ground truth. We collect data, denoted D, from our underlying system in
the form of a set of state trajectories of a set length. We vary trajectory length
to test robustness to data with incomplete coverage. We disregard the numerical
error in the Monte Carlo approximate integration, which is the same for both
techniques.

We compute the mean squared error (MSE) between the confidence outcome
and the ground truth from Equation (6), namely MSE = 1

n

Pn
i=1(Ytrue � Yi)2,

where n is the number of experiments run and Yi is the result P(M✓ |= �) for
the i-th run.

The SMC we compare our work to is “black box” and collects sample trajec-
tories from the system, then determines whether the trajectories satisfy a given
property, and applies statistical techniques (such as hypothesis testing) to decide
whether the system satisfies the property or not, with some degree of confidence.
Our “grey-box” approach collects data from the system, uses the data to deter-
mine a distribution over parameter values in the parameterised model class and
applies statistical techniques (in this case, a Bayesian confidence calculation) to
decide whether the system satisfies the property or not, with some degree of con-
fidence. We could then additionally apply hypothesis testing to our approach.
However, as we do not do this, for a meaningful comparison with our approach
we implement the framework of the SMC procedure outlined in [14]and omit the
hypothesis testing. Instead, we compute a Bayesian confidence by integrating the
posterior distribution given over the [0,1] interval, representing the probability
of a trace satisfying the property. The trace generation and trace verification
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stages of SMC are implemented in the same way in the four statistical model
checking methods in PRISM.

Results and Discussion The first point to note is the confidence is low, and MSE
high for parameter values close to ✓ = 0.5 for both approaches. This is due to
✓ = 0.5 being on the edge of the feasible set and is consistent with the information
we wish to obtain from the confidence calculation: if the parameter value is near
the edge of the feasible set, we need to know its value precisely to be sure it falls
in the feasible set. Consider that in order to compute the confidence S |= �, we
integrate the posterior distribution over the feasible set ⇥� = {✓ > 0.5}. The
posterior distribution for ✓ = 0.5 should have a peak centred at 0.5 with half of
the area under the peak in the feasible set, leading to P(M(✓) |= �) = 0.5. The
height and width of the distribution p(✓ | D) are characterised by the amount
of data available, as well as the consistency of the data, and so we expect the
MSE to be higher for parameter values close to the threshold.
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Fig. 4: Outcomes of SMC are given in (a) and (b), outcomes of our approach
are given in (c) and (d). The comparison is done over a data set D composed
of traces of 10 and 100 transitions. On the x-axis, 1000  |Dt|  20000. On
the y-axis, 0.3  ✓  0.7. The darker (purple) colour indicates a higher mean
squared error.

The key result is, for both approaches, the mean squared error reduces as |D|
increases and the variance decreases, but our approach consistently produces a
smaller error and variance than SMC for any parameter values excluding ✓ = 0.5
(where both approaches perform comparably). Our approach requires an order
of magnitude less data than SMC and above |D| = 2000, the error for our
approach is smaller than the error in the Monte Carlo integration, whereas SMC
does not reach this precision threshold in our experiments, which we perform up
to |D| = 200000.
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both methods over empirical data obtained from M(✓) for varying values of ✓,
and compare the outcomes with the ground truth.

The core idea of the SMC of interest for this work is to generate sample
trajectories from the system model, to then determine whether the trajectories
satisfy a given property, and to apply statistical techniques (such as hypothesis
testing) to decide whether the system satisfies the property or not, with some
degree of confidence. Our approach collects data from the original system, uses
the data to determine a distribution over parameter values in the parameterised
model class and applies statistical techniques (in this case, a Bayesian confidence
calculation) to decide whether the system satisfies the property or not, with some
degree of confidence. We could then additionally apply hypothesis testing to our
approach. However, as we do not do this, for a meaningful comparison with
our approach we implement the early steps of the SMC procedure from [32],
and omitting the hypothesis testing we compute a Bayesian confidence from a
distribution over satisfying traces. The trace generation and trace verification
stages of SMC are implemented in the same way in the four statistical model
checking methods in PRISM.

We collect training data from our original system in the form of a history of
states visited up until time t, denoted again as D. We use 100  |D|  200, 000
state transitions in finite traces, e.g., D contains traces of length 100, e.g., when
|D| = 1000 we have 10 traces of length 100. We run both methods with the same
data.We test robustness to trace length, e.g., when |D| = 1000, we may have
100 traces of length 10, or 10 traces of length 100.

We compute the mean squared error (MSE) between the confidence outcome
and the ground truth from Equation (6), namely MSE = 1

n

Pn
i=1(Ytrue � Yi)2,

where n is the number of experiments run and Yi is the result P(M✓ |= �) for
the i-th run.

We disregard the numerical error in the Monte Carlo approximate integra-
tion, which is the same for both techniques. We cover the parameter range
0.3  ✓  0.7, selected at intervals of 0.05.

Results and Discussion The first point to note is that the confidence is low, and
the MSE high for the parameter values close to ✓ = 0.5 for both approaches. This
is due to ✓ = 0.5 being on the edge of the feasible set and is consistent with the
information we wish to obtain from the confidence calculation: if the parameter
value is near the edge of the feasible set, we need to know its value precisely to be
sure it falls in the feasible set. Consider that in order to compute the confidence
of satisfaction of the property �, we integrate the posterior distribution over the
feasible set ⇥� = {✓ > 0.5}. The posterior distribution obtained for ✓ = 0.5
should have a peak centred at 0.5 and half of the area under the peak should
fall in the feasible set, leading to P(M(✓) |= �) = 0.5. The height and width of
the distribution p(✓ | D) are characterised by the amount of data available, as
well as by the consistency of the data, and so we expect the MSE to be higher
for parameter values close to the threshold.

The key result is that the mean squared error reduces as |D| increases and the
variance decreases in both approaches, but our approach consistently produces a
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stages of SMC are implemented in the same way in the four statistical model
checking methods in PRISM.
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Fig. 4: Outcomes of SMC are given in (a) and (b), outcomes of our approach
are given in (c) and (d). The comparison is done over a data set D composed
of traces of 10 and 100 transitions. On the x-axis, 1000  |Dt|  20000. On
the y-axis, 0.3  ✓  0.7. The darker (purple) colour indicates a higher mean
squared error.

The key result is, for both approaches, the mean squared error reduces as |D|
increases and the variance decreases, but our approach consistently produces a
smaller error and variance than SMC for any parameter values excluding ✓ = 0.5
(where both approaches perform comparably). Our approach requires an order
of magnitude less data than SMC and above |D| = 2000, the error for our
approach is smaller than the error in the Monte Carlo integration, whereas SMC
does not reach this precision threshold in our experiments, which we perform up
to |D| = 200000.
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we wish to obtain from the confidence calculation: if the parameter value is near
the edge of the feasible set, we need to know its value precisely to be sure it falls
in the feasible set. Consider that in order to compute the confidence S |= �, we
integrate the posterior distribution over the feasible set ⇥� = {✓ > 0.5}. The
posterior distribution for ✓ = 0.5 should have a peak centred at 0.5 with half of
the area under the peak in the feasible set, leading to P(M(✓) |= �) = 0.5. The
height and width of the distribution p(✓ | D) are characterised by the amount
of data available, as well as the consistency of the data, and so we expect the
MSE to be higher for parameter values close to the threshold.
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Fig. 4: Outcomes of SMC are given in (a) and (b), outcomes of our approach
are given in (c) and (d). The comparison is done over a data set D composed
of traces of 10 and 100 transitions. On the x-axis, 1000  |Dt|  20000. On
the y-axis, 0.3  ✓  0.7. The darker (purple) colour indicates a higher mean
squared error.

The key result is, for both approaches, the mean squared error reduces as |D|
increases and the variance decreases, but our approach consistently produces a
smaller error and variance than SMC for any parameter values excluding ✓ = 0.5
(where both approaches perform comparably). Our approach requires an order
of magnitude less data than SMC and above |D| = 2000, the error for our
approach is smaller than the error in the Monte Carlo integration, whereas SMC
does not reach this precision threshold in our experiments, which we perform up
to |D| = 200000.



Case Study
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We use information more efficiently: for SMC a “unit” of 
information is one trace; for us a “unit” of information is one 
parameterised transition

Our approach produces more accurate results with less data
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• Integration of alternative parameter synthesis techniques 

• Non-linearly parameterised Markov chains 

• External non-determinism (parameterised MDPs) 

• Addition of Bayesian hypothesis testing

Next steps
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• We presented a data-based verification approach 

• Addresses model-checking with partial models and limited 
data 

• Promises greater accuracy than black-box SMC

Conclusions
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