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• Verifying real systems is hard; full models are 
difficult to obtain 

• Data-based verification requires a lot of data 

• 2016: Bayesian verification framework for Markov 
chains 

• Now: Markov Decision Processes, using automated 
experiment design 
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Parametric Markov Decision Process

1

Definition 1 M⇥ = (S,Act,T✓, ◆init,AP, L,⇥), where:

– finite, non-empty set of states,
– set of actions,
– T✓ = transition probability function
– initial state
– ⇥ =set of all possible evaluations of ✓.
– labelling function
– atomic propositions

We assume that the MDP is not known exactly, and instead belongs to the set
of MDPs represented by a parametric Markov decision process.
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Fig. 2: Example pMDP where o✏ine strategy synthesis may not be optimal

quantify a confidence that our system satisfies a given property? question 2 – can
we design experiments that increase the accuracy of this confidence?

Experimental Set-up. Our approach is implemented in C++. We use PRISM
[14] for parameter synthesis, and GSL-2.3 [6] for random number generation.

To answer question 2, we evaluate our synthesised strategy approach against
two alternatives. The first comparison is against a memoryless strategy, ran-
domly selected from the set of all possible memoryless strategies. We term the
resultant strategy as random static strategy. The second comparison strategy
randomly selects actions at each state as data is collected, and therefore we
term it as no strategy. All three approaches use the same Bayesian inference
framework over parameter counts.

We present the analysis of our approach on the simple pMDP model in Fig. 3
and with the PCTL property P�0.5(true U complete). We also run our approach
on models up to 1000 states, but find the scalability depends on the number of
actions in the model. We assign non-informative priors to the parameters. Note
that in our model, ✓2 does not contribute to the satisfaction of the property,
and having validated that this does not a↵ect the confidence results, we set ✓2
equal to ✓1. We simulate a range of underlying systems, corresponding to models
M(✓) with di↵erent values for ✓, which allows us to assess the accuracy of our
confidence values against a ground truth, Gtrue. For a simulated system modelled
by M(✓), this is given by:

Gtrue =

⇢
0 if ✓1 /2 [0.369, 0.75],
1 if ✓1 2 [0.369, 0.75].

(2)

We collect data from the simulated system in the form of a history of state-
action pairs visited. We compute the mean squared error (MSE) between the
ground truth from Eq. (2) and the confidence estimate, formally,
MSE = 1

n

Pn
i=1(Gtrue � Gi)2, where n is the number of trials and Gi is the

output confidence estimate for the i-th run.

Observations and Discussion. The MSE in the confidence from all three
strategies, over a range of underlying systems and varying quantities of data
(i.e., for di↵erent numbers and lengths of traces), are shown in Fig. 4. The
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PCTL properties

We are able to consider any property that is compatible 
with the PRISM parameter synthesis tool. We focus on 
non-nested PCTL:
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We use PRISM to synthesise the feasible set of 
parameters, for which the model satisfies the property:

θ1 

θ2 

6

Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

Parameter Synthesis
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Fig. 3: A simple pMDP for the experimental evaluation.
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Fig. 4: Errors produced by the confidence computation for the three strategies
considered. Plots (a) and (b) show the MSE for each type of strategy and for
10 traces of di↵erent trace lengths over di↵erent simulated systems. Plot (c)
presents the MSE for the synthesised strategy over di↵erent simulated systems
and combinations of number of traces with varying trace lengths. We denote by
(t10, l02) a run with 10 traces, each of length 02.

convergence of the confidence outcome is shown in Fig. 5, with box plots showing
the interquartile range (IQR), omitting any outliers, and whiskers extending to
the most extreme data points not considered to be outliers.

Accuracy of confidence results. The confidence for all approaches is low around
the lower boundary of ⇥�, and the MSE is high, shown in Fig. 4. This is consis-
tent with the goal of the confidence calculation, where one would need to know
the exact value of the system parameter ✓ if its value is near this edge, to be
able to decide whether it falls in ⇥� or not, and hence the calculation has a high
sensitivity around this boundary This sensitivity increases as the amount of data
increases, as seen by comparing the MSE for ✓1 = 0.4 in Fig. 4a, where the trace
length is 2, with Fig. 4b when the trace length has increased up to 10. To ex-
plore why this is the case, consider that to compute the confidence we integrate
the posterior distribution over the feasible set ⇥� = [0.369, 0.75]. The posterior
distribution for ✓i = 0.369 should have a peak centred at 0.369 and half of the
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Data

• We collect data from the underlying system in the form of 
finite number of finite traces 

• We turn this into transition counts, group by parameter
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larger systems. Storm lifts a parametric Markov decision process to a parameter-
free Stochastic Game (SG) between two players, and solves the resulting SG via
standard value iteration.

4 Bayesian Inference in Parametric Markov Decision

Processes

In this work, we collect data from the underlying system and use Bayesian learn-
ing to infer a probability distribution over parameters of the pMDP model based
on the collected data. Bayesian inference maintains a probability distribution
over these parameters and updates the distribution by employing Bayes’ rule as
more observations are gathered [22]. An initial prior distribution p(✓) is assumed.

Data. We collect finite traces from the underlying system, in the form of a
sequence of visited states and actions. We use D to denote a set of finite traces.
We split the data into transition counts: Dsk,↵1,sl denotes the number of times
the transition from sk to sl under action ↵1 appears within the data set D.
Each transition count is the outcome of an independent trial in a multinomial
distribution3 with event probabilities given by the transition probabilities.

Assume for now that the transitions are parameterised either with constants
or with single parameters of the form ✓i or 1�✓i. We can group transition counts
for identically parameterised transitions. We shall denote by D✓j the transition
counts for all transitions with probability given by ✓j .

We wish to obtain posterior distributions for each parameter viamarginal dis-
tributions (which, in this case, are binomial distributions), by applying parameter-
tying [20] techniques. We thus obtain a number of transition counts for 1� ✓j as
the sum of all transitions not parameterised with ✓j , under an action that has
a transition parameterised with ✓j , and denote it by D¬✓j . Hence D✓j and D¬✓j

are calculated as:

D✓j =
X

si2S,sl2S,↵k2Act

Dsi,↵k,sl forT(si,↵k, sl) = ✓j , and

D¬✓j =
X

si2S,sl2S,↵k2Act

Dsi,↵k,sl for T(si,↵k, sl) 6= ✓j ^ 9sm 2 S : T(si,↵k, sm) = ✓j .

Let D✓j ,¬✓j denote the pair (D✓j , D¬✓j ). For parameterisations where the tran-

sition probabilities are expressed as linear functions of parameters, we obtain

3 A multinomial distribution is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i ,

for ni 2 {0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and
p is a discrete distribution over k outcomes.

Automated Experiment Design for Data-E�cient Verification of pMDPs 7

larger systems. Storm lifts a parametric Markov decision process to a parameter-
free Stochastic Game (SG) between two players, and solves the resulting SG via
standard value iteration.

4 Bayesian Inference in Parametric Markov Decision

Processes

In this work, we collect data from the underlying system and use Bayesian learn-
ing to infer a probability distribution over parameters of the pMDP model based
on the collected data. Bayesian inference maintains a probability distribution
over these parameters and updates the distribution by employing Bayes’ rule as
more observations are gathered [22]. An initial prior distribution p(✓) is assumed.

Data. We collect finite traces from the underlying system, in the form of a
sequence of visited states and actions. We use D to denote a set of finite traces.
We split the data into transition counts: Dsk,↵1,sl denotes the number of times
the transition from sk to sl under action ↵1 appears within the data set D.
Each transition count is the outcome of an independent trial in a multinomial
distribution3 with event probabilities given by the transition probabilities.

Assume for now that the transitions are parameterised either with constants
or with single parameters of the form ✓i or 1�✓i. We can group transition counts
for identically parameterised transitions. We shall denote by D✓j the transition
counts for all transitions with probability given by ✓j .

We wish to obtain posterior distributions for each parameter viamarginal dis-
tributions (which, in this case, are binomial distributions), by applying parameter-
tying [20] techniques. We thus obtain a number of transition counts for 1� ✓j as
the sum of all transitions not parameterised with ✓j , under an action that has
a transition parameterised with ✓j , and denote it by D¬✓j . Hence D✓j and D¬✓j

are calculated as:

D✓j =
X

si2S,sl2S,↵k2Act

Dsi,↵k,sl forT(si,↵k, sl) = ✓j , and

D¬✓j =
X

si2S,sl2S,↵k2Act

Dsi,↵k,sl for T(si,↵k, sl) 6= ✓j ^ 9sm 2 S : T(si,↵k, sm) = ✓j .

Let D✓j ,¬✓j denote the pair (D✓j , D¬✓j ). For parameterisations where the tran-

sition probabilities are expressed as linear functions of parameters, we obtain

3 A multinomial distribution is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i ,

for ni 2 {0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and
p is a discrete distribution over k outcomes.

1

Definition 1 M⇥ = (S,Act,T✓, ◆init,AP, L,⇥), where:

– finite, non-empty set of states,
– set of actions,
– T✓ = transition probability function
– initial state
– ⇥ =set of all possible evaluations of ✓.
– labelling function
– atomic propositions

We assume that the MDP is not known exactly, and instead belongs to the set
of MDPs represented by a parametric Markov decision process.

p(✓k | D)
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Cpred
trace =
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.

Conjugate prior = Dirichlet

binomial 
distribution
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Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.

Bayesian Inference
Automated Experiment Design for Data-E�cient Verification of pMDPs 13

S0

S2

{complete}

S3

S4

S1

2
5 (1� ✓1 � 1

4 )

1
4

✓1

113
5

1

1
10

✓2

(1� ✓2 � 1
10 )1

1

1

Fig. 3: A simple pMDP for the experimental evaluation.
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Fig. 4: Errors produced by the confidence computation for the three strategies
considered. Plots (a) and (b) show the MSE for each type of strategy and for
10 traces of di↵erent trace lengths over di↵erent simulated systems. Plot (c)
presents the MSE for the synthesised strategy over di↵erent simulated systems
and combinations of number of traces with varying trace lengths. We denote by
(t10, l02) a run with 10 traces, each of length 02.

convergence of the confidence outcome is shown in Fig. 5, with box plots showing
the interquartile range (IQR), omitting any outliers, and whiskers extending to
the most extreme data points not considered to be outliers.

Accuracy of confidence results. The confidence for all approaches is low around
the lower boundary of ⇥�, and the MSE is high, shown in Fig. 4. This is consis-
tent with the goal of the confidence calculation, where one would need to know
the exact value of the system parameter ✓ if its value is near this edge, to be
able to decide whether it falls in ⇥� or not, and hence the calculation has a high
sensitivity around this boundary This sensitivity increases as the amount of data
increases, as seen by comparing the MSE for ✓1 = 0.4 in Fig. 4a, where the trace
length is 2, with Fig. 4b when the trace length has increased up to 10. To ex-
plore why this is the case, consider that to compute the confidence we integrate
the posterior distribution over the feasible set ⇥� = [0.369, 0.75]. The posterior
distribution for ✓i = 0.369 should have a peak centred at 0.369 and half of the

8 E. Polgreen et al.

D✓j ,¬✓j by the same procedure that [19] uses. We expand the markov decision
process, introducing new states and new transitions, allowing us to force all tran-
sition probabilities to be expressed as constants, or in the form of ✓j or 1 � ✓j ,
for any parameter ✓j 2 ✓. We can then represent the parameter counts over pa-
rameters in the new transitions as multinomial distributions. We omit the detail
here and refer the reader to the extended version of this paper, and the original
work [19].

Bayesian Inference with Data. Consider a parametric Markov decision pro-
cess M⇥ = (S, Act, T✓, ◆init, AP, L, ⇥) with ⇥ ✓ [0, 1]n. Suppose that we
have obtained D✓j and D¬✓j for all ✓j 2 ✓, and that we have assumed non-
informative, uniform prior distributions for all parameters ✓j 2 ✓, denoted by
p(✓j). The posterior density p(✓j | D) is given by Bayes’ rule:

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)✓
D✓j

j (1� ✓j)
D¬✓j

P(D✓j ,¬✓j )
.

A standard approach [5, 17, 22] is to consider the prior to be a Dirichlet
distribution. The posterior distribution is then updated by adding the event
counts to the hyperparameters of the prior. The Dirichlet prior distribution for
the pair (✓j , 1 � ✓j) is denoted as Dir(✓j | µ✓j ) with hyperparameters µ✓j =

(µ
✓j
1 , µ

✓j
2 ). Thus, the updated posterior distribution for the parameter ✓j is given

as: ✓j ⇠ p(✓j | D) = Dir(✓j | D✓j ,¬✓j + µ✓j ).
The posterior distribution for the entire parameter vector ✓, given by p(✓ | D)

is equal to the product of the posterior distributions for all ✓i 2 ✓. This holds
due to the independence of each ✓i over independent state-action pairs in the
pMDP. Note that, if we have a linearly parameterised MDP, we obtain some of
the transition counts in the form of multinomial distributions. We hence obtain
realisations of the posterior by a sampling procedure from [19] as explained in
the extended version of this paper.

5 Computation of Confidence

We determine a confidence, C, for the satisfaction of a PCTL formula � by a
system S of interest. We first presented this procedure in previous work [19], and
we need no extension to this due to the external nondeterminism being factored
out in the Bayesian inference calculation given in the previous section.

Definition 7. Given a PCTL formula � that has a binary satisfaction function,
i.e., the property is either satisfied or not, and posterior distributions p(✓i | D)
for all ✓i 2 ✓, as obtained in the previous section, the confidence in S |= � can
be quantified by Bayesian inference as

C = P(S |= � | D) =
R
⇥�

Q
✓i2✓ p(✓i | D✓i,¬✓i)d✓, (1)
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.
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Algorithm 1 Markov chain expansion (M⇥)

M⇤
⇥  M⇥

for all si 2 S⇤ do . Case I: transition splitting
for all T⇤

✓(si, sj) = k0 +
P

l2L kl✓l do
S⇤  {s⇤ij,l}l2L [ sij,0
T⇤

✓(si, sj) := 0
T⇤

✓(si, s
⇤
ij,0) := k0 and T⇤

✓(s
⇤
ij,0, sj) := 1

for all l 2 L do
T⇤

✓(si, s
⇤
ij,l) := kl✓l and T⇤

✓(s
⇤
ij,l, sj) := 1

for all si 2 S⇤ do . Case II: state splitting
if 9sk 2 S⇤ : T⇤

✓(si, sk) = 1� k0 �
P

l2L kl✓l then
T⇤

✓(si, sk) := 1� k0 �
P

l2L kl
for all T⇤

✓(si, sm) = kl✓l do
S⇤  s⇤m0

T⇤
✓(si, sm) := 0 , T⇤

✓(si, s
⇤
m0) := kl and T⇤

✓(s
⇤
m0 , sk) := 1� ✓l

T⇤
✓(s

⇤
m0 , sm) := ✓l

return M⇤
⇥ . return expanded DTMC

Definition 6. Given a PCTL specification �, a complete trace (sample trajec-
tory) D of the system S up to time t, and a transition function T, the confidence
S |= � can be quantified by Bayesian Inference as

P(S |= � | D) =
R
⇥ f�(✓)p(✓ | D)d✓. (4)

As we only consider the satisfaction of a property S |= � as a binary-valued
mapping from the space of parameters, the satisfaction function in (4), f� :
⇥ ! {0, 1}, (4) can be reformulated as:

P(S |= � |D) =
R
⇥�

p(✓ | D)d✓, (5)

where ⇥� denotes the set of parameters corresponding to models verifying the
property � (as generated by PRISM). Further, given the independent posterior
distributions for each parameter in ✓ resulting from Sec. 5.2, the confidence
can be computed as P(S |= � |D) =

R
⇥�

Q
✓i2✓ p(✓i | D)d⇥. The integral of a

Dirichlet distribution can be obtained by iterative or numerical methods: here we
use a simple Monte-Carlo approach, which depends on samples of the posterior
distribution as clarified in Algorithm 2.

7 Experiment results

We show our approach requires smaller amounts of data than statistical model
checking (SMC) to verify the system satisfies a given quantitative specification
up to a prescribed confidence level. We further claim our approach is more
robust than standard SMC in situations where only data of limited trace length
is available.

6

Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

θj = 1 θj = 0 
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.

Note: we use 
simple Monte 
Carlo to compute 
the integral. 
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Some data is more useful than other data, i.e., it tells us more 
about whether the property is satisfied by the system. e.g., 

• traces with no parameterised transitions are useless 

• knowledge about some parameters is more useful than others.
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sec. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chainM⇥ = (S,T✓, ◆init,AP, L,⇥)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter ✓i of vector ✓ = (✓1, ✓2, . . . , ✓n) 2 ⇥ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector ✓ into sub-vectors ✓si , giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, ✓sk = ✓j , and
the corresponding state sk 2 S, with outgoing transitions ✓j and 1� ✓j to states
s1 and s2, respectively. We denote by p(✓j) the prior over ✓j , which fully de-
fines the transition probabilities T✓(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) 2 S ⇥ S the number of transitions sk ! sl in D is denoted as Dsl

sk . The
posterior density p(✓j | D) over ✓j based on D is

p(✓j | D) =
P(D | ✓j)p(✓j)

P(D)
=

p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk

P(Dsk)
(2)

and depends only on Dsk = {Ds0
sk}s02S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
Q

s02S(T✓(sk, s0))
Ds0

sk takes the form of a
multinomial distribution,3 which reduces to a binomial in the case of two outgo-
ing transitions. A closed-form expression for the posterior is obtained by taking
a conjugate prior, which, for the class of multinomial distributions, is a Dirichlet
distribution. For the pair (✓j , 1 � ✓j) the Dirichlet distribution with hyperpa-
rameters ↵ = (↵1,↵2) has a probability density function given by

Dir(✓j | ↵) = 1
B(↵)✓

↵1�1
j (1� ✓j)↵2�1

on the open simplex defined by 0 < ✓j < 1. The normalising constant, B(↵), is
a multinomial beta function, and can be written in terms of gamma functions
as B(↵) = � (↵1)� (↵2)/� (↵1 + ↵2). Hence, for a prior p(✓j) = Dir(✓j | ↵) we
obtain the posterior distribution for ✓j ⇠ p(✓j | D) = Dir(✓j | Dsk + ↵), namely

p(✓j | D) / p(✓j)
Q

s02S T✓(sk, s0)
Ds0

sk / ✓
↵1�1
j (1� ✓j)↵2�1

✓
Ds1

sk
j (1� ✓j)

Ds2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(↵+
Dsk) = � (↵1 +D

s1
sk)� (↵2 +D

s2
sk)/� (↵1 +D

s1
sk + ↵2 +D

s2
sk). In other words, as

3 A multinomial is defined by its density function f(· | p,N) /
Qk

i=1 p
ni
i , for ni 2

{0, 1, ..., N} and such that
Pk

i=1 ni = N , where N 2 N is a parameter and p is a
discrete distribution over k outcomes.



Experiment design

• We estimate the “utility” of picking an action by predicting 
the confidence after we take the action:
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Es,↵ (Ds,↵,s0) and Es,↵ (Ds,↵,s), are equal to the expected transition probabilities
for T✓(s,↵, s0) and T✓(s,↵, s). Consider only the transition parameterised with
T✓(s,↵, s0) = gl(✓):

Es,↵ (Ds,↵,s0) = E (T(s,↵, s0)) = gl(E (✓))

= k0 + k1E (✓1) + ...+ knE (✓n) = k0 +
X

i=1:n

ki
µ✓i
1

µ✓i
1 + µ✓i

2

.

We can extract the parameter counts as described in Section 4, to obtain Es,↵ (D✓i,¬✓i).

6.2 Optimisation of Predicted Confidence Gain

The underlying system either satisfies or does not satisfy the given property, so
we wish to minimise the di↵erence between our confidence value and the closest
among 0 or 1, or to maximise the di↵erence between a confidence of 0.5 and our
confidence, i.e., the maximum absolute value of 0.5� C. We can therefore define
a predicted confidence gain for a state-action pair (s,↵), denoted by Gs,↵, as the
maximisation of this di↵erence, i.e., the biggest step towards either 0 or 1.

Gs,↵ = |0.5� Cpred
s,↵ |� |0.5� C|

For a finite trace of length N , we can calculate the optimal predicted confidence
gain for state s and discrete time step t, denoted by xt

s, as

xt
s =

(
max↵2Act(s)(Gs,↵ +

P
(T(s,↵, s0). xt+1

s0 )) if 0 < t < N

0 if t � N.

It is important to note that the confidence gain is not a static quantity, because
Gs,↵ depends on the distribution over the relevant component parameters of ✓
at time t.

6.3 Optimal Confidence Gain: Experiment Design via Strategy

Synthesis

Due to memory dependency of the confidence gain, computing an optimal strat-
egy is intractable, and cannot be solved via conventional dynamic programming
methods [8]. However, we put forward a few alternatives.

Explicitly evaluated memoryless strategies. The conventional way of solving a
MDP with non-Markovian rewards is to translate the model into an equivalent
MDP with Markovian rewards, whose states result from augmenting those of
the original model with extra information capturing enough history to make the
reward Markovian. This is in general computationally expensive [8]. Given that
we will be performing strategy synthesis repeatedly in our method (i.e., once
each time a new batch of data is sequentially gathered), we compromise and use
a straightforward selection method to find the best memoryless strategy. This
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The operation shown in Eq. (1) is equivalent to computing the confidence that
each parameter is within its feasible set, and then taking the product of all
the parameter confidence values. The integral of a Dirichlet distribution is hard
to compute using analytical methods, and so we use Monte Carlo integration.
This also allows integration with the calculation of the posterior distribution
for pMDPs with linear parameterisations, where we have obtained the posterior
distribution by means of sampling, as described in [19].

6 Online Experiment Design

The key contribution in this paper is the design of experiments to generate max-
imally useful data. We describe in the preceding sections how we use a limited
amount of data e�ciently to obtain a confidence that the system satisfies the
property. In this section, we propose a method for selecting the deterministic
memoryless strategy that provides the most useful data to input into our con-
fidence computation in Section 5. This allows us to compute the most accurate
confidence value for the finite data set of limited size, i.e., the confidence should
be high if the underlying system satisfies the property, and low if the underlying
system does not satisfy the property.

6.1 Predicted Confidence

We predict the confidence after taking a transition from state s under action ↵.
We define the predicted confidence, Cpred

s,↵ , to be the confidence computed using
the expected parameter counts, after taking a single transition from s under action
↵: these are denoted by Es,↵ (D✓i,¬✓i) for all ✓i 2 ✓. Formally,

Cpred
s,↵ =

Z

⇥�

Y

✓i2✓

p(✓i | Es,↵ (D✓i,¬✓i))d✓,

where p(✓i | Es,↵ (D✓i,¬✓i)) is the predicted posterior distribution obtained by
updating the prior, Dir(✓i | µ✓i), with the expected parameter counts, i.e.,
Dir(✓i | µ✓i + Es,↵ (D✓i,¬✓i)).

We first compute the expected transition counts for the state-action pair,
Es,↵ (Ds,↵), from which we extract the expected parameter counts using the
method in Section 4. Consider a state s with an action ↵, and two transitions with
probabilities T✓(s,↵, s0) = gl(✓) = k0+k1✓1+...+kn✓n, and T✓(s,↵, s) = 1�gl(✓).
The expected transition counts are given by a multinomial distribution over the
outgoing transitions under that action, with event probabilities equal to the ex-
pected transition probabilities. Note that prior distribution for any parameter
✓i 2 ✓ is Dir(✓i | µ✓i). To compute the expected transition probabilities, we

require the expected values of the parameters, given by E (✓i) = µ
✓i
1

µ
✓i
1 +µ

✓i
2

for

all ✓i 2 ✓. The expected value of the transition probabilities are then given
by evaluating gl(E (✓)) and 1 � gl(E (✓)). Hence the expected transition counts

• We can then estimate “information gain” and assign it to a 
state-action pair as a reward:



Experiment design

• We compute the information gain for every state-action pair 
in the MDP 

• For a trace of length N, the optimal information gain is then:
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s, as
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(
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P
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s0 )) if 0 < t < N

0 if t � N.

It is important to note that the confidence gain is not a static quantity, because
Gs,↵ depends on the distribution over the relevant component parameters of ✓
at time t.

6.3 Optimal Confidence Gain: Experiment Design via Strategy

Synthesis

Due to memory dependency of the confidence gain, computing an optimal strat-
egy is intractable, and cannot be solved via conventional dynamic programming
methods [8]. However, we put forward a few alternatives.

Explicitly evaluated memoryless strategies. The conventional way of solving a
MDP with non-Markovian rewards is to translate the model into an equivalent
MDP with Markovian rewards, whose states result from augmenting those of
the original model with extra information capturing enough history to make the
reward Markovian. This is in general computationally expensive [8]. Given that
we will be performing strategy synthesis repeatedly in our method (i.e., once
each time a new batch of data is sequentially gathered), we compromise and use
a straightforward selection method to find the best memoryless strategy. This

       depends on the distribution of the parameters at time t
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we will be performing strategy synthesis repeatedly in our method (i.e., once
each time a new batch of data is sequentially gathered), we compromise and use
a straightforward selection method to find the best memoryless strategy. This



Experiment design

• The memory dependence of the information gain makes finding 
the optimal strategy hard 

• To simplify the problem we consider only memoryless strategies
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Evaluation

• Previous work has shown that the Bayesian verification framework 
uses data more efficiently than other statistical methods 

• We compare our automated experiment design with the basic 
Bayesian verification framework using no strategy (randomly selecting 
actions)14 E. Polgreen et al.
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(b) Random static strategy
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(c) No strategy

Fig. 5: Convergence of confidence outcomes to the ground truth for a run with
20 traces, each of length 10 over a simulated underlying system with both pa-
rameters (✓1, ✓2) set to 0.7.

probability mass falling in the feasible set, leading to C = 0.5. The height and
width of the posterior distribution are determined by the amount and spread of
data available and for a tall and thin distribution (encompassing a large amount
of data), a small change in the position of the peak can move a large percentage
of mass of the distribution in or out of the feasible set. This is prominent in
Fig. 4b since our approach synthesises a strategy that would yield the highest
information gain, i.e., the most useful data. However, as we move away from the
edge, increased data e↵ectively places probability mass away from the uncertain
regions, thus reducing both variance and MSE. Neither of the other two alter-
natives has the ability to collect as much useful data and therefore variance is
high even at the far ends of the parameter spectrum. The ability of our method
to collect more useful data is also illustrated in the convergence graphs shown
in Fig. 5, where synthesis approach converges to the ground truth quicker than
both comparison strategies.

We conclude that our strategy synthesis does improve the accuracy of the
confidence calculation, unless the parameter value falls close to the boundary of
⇥�, and that away from this boundary the confidence converges to the ground
truth and we are able to verify the property over S based on the data collected.

Robustness. We run our implementation with varying lengths of traces, where
the total number of transitions in the data remains the same, and the results
summarised in Fig. 4c show that our approach, on this case study, is relatively
insensitive to this variation (compare Fig. 4a with Fig. 4b). Our method depends
on the number of parameterised transitions we visit and so depends on the trace
length being long enough to visit some parameterised transitions. This is in
contrast to Statistical Model Checking techniques, where the accuracy of the
approach depends on the trace length being great enough to satisfy the property,
e.g., to reach some desired state. In both cases this will vary depending on the
structure of the model.

14 E. Polgreen et al.
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edge, increased data e↵ectively places probability mass away from the uncertain
regions, thus reducing both variance and MSE. Neither of the other two alter-
natives has the ability to collect as much useful data and therefore variance is
high even at the far ends of the parameter spectrum. The ability of our method
to collect more useful data is also illustrated in the convergence graphs shown
in Fig. 5, where synthesis approach converges to the ground truth quicker than
both comparison strategies.

We conclude that our strategy synthesis does improve the accuracy of the
confidence calculation, unless the parameter value falls close to the boundary of
⇥�, and that away from this boundary the confidence converges to the ground
truth and we are able to verify the property over S based on the data collected.

Robustness. We run our implementation with varying lengths of traces, where
the total number of transitions in the data remains the same, and the results
summarised in Fig. 4c show that our approach, on this case study, is relatively
insensitive to this variation (compare Fig. 4a with Fig. 4b). Our method depends
on the number of parameterised transitions we visit and so depends on the trace
length being long enough to visit some parameterised transitions. This is in
contrast to Statistical Model Checking techniques, where the accuracy of the
approach depends on the trace length being great enough to satisfy the property,
e.g., to reach some desired state. In both cases this will vary depending on the
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Conclusions

• We have extended the Bayesian verification framework to systems 
with external non-determinism 

• We have shown that automated experiment design reduces the 
amount of data needed

• Improvements to the experiment design 

• Other frameworks: continuous time

Future work
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Evaluation

• Previous work has shown that the Bayesian verification framework 
uses data more efficiently than other statistical methods 

• We compare our automated experiment design with the basic 
Bayesian verification framework using no strategy (randomly selecting 
actions)
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Fig. 3: A simple pMDP for the experimental evaluation.
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Fig. 4: Errors produced by the confidence computation for the three strategies
considered. Plots (a) and (b) show the MSE for each type of strategy and for
10 traces of di↵erent trace lengths over di↵erent simulated systems. Plot (c)
presents the MSE for the synthesised strategy over di↵erent simulated systems
and combinations of number of traces with varying trace lengths. We denote by
(t10, l02) a run with 10 traces, each of length 02.

convergence of the confidence outcome is shown in Fig. 5, with box plots showing
the interquartile range (IQR), omitting any outliers, and whiskers extending to
the most extreme data points not considered to be outliers.

Accuracy of confidence results. The confidence for all approaches is low around
the lower boundary of ⇥�, and the MSE is high, shown in Fig. 4. This is consis-
tent with the goal of the confidence calculation, where one would need to know
the exact value of the system parameter ✓ if its value is near this edge, to be
able to decide whether it falls in ⇥� or not, and hence the calculation has a high
sensitivity around this boundary This sensitivity increases as the amount of data
increases, as seen by comparing the MSE for ✓1 = 0.4 in Fig. 4a, where the trace
length is 2, with Fig. 4b when the trace length has increased up to 10. To ex-
plore why this is the case, consider that to compute the confidence we integrate
the posterior distribution over the feasible set ⇥� = [0.369, 0.75]. The posterior
distribution for ✓i = 0.369 should have a peak centred at 0.369 and half of the



Markov chain expansion

What if a parameter appears multiple times in a linear 
pMC, in different linear equations? How do we combine the 
posterior distributions?
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We “expand” the transitions with linear parameterisation, to 
turn the MC into a basic pMC. i.e., transitions have only one 
parameter.

9

Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L⇤

,⇥), both over set ⇥. We say M⇤
⇥ is an expan-

sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
init. The extended labelling map L

⇤ is a trivial extension of L,
assigning labels L(s) for s 2 S and an empty label to S

⇤ \ S.
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Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

Markov chain expansion
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Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L⇤

,⇥), both over set ⇥. We say M⇤
⇥ is an expan-

sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
init. The extended labelling map L

⇤ is a trivial extension of L,
assigning labels L(s) for s 2 S and an empty label to S

⇤ \ S.

Markov chain expansion

We “expand” the transitions with linear parameterisation, to 
turn the MC into a basic pMC. i.e., transitions have only one 
parameter.
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Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised
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P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised
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Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
s0

⇤ := {Ds2
s0 , D

s⇤0
s0 , D

s2
s⇤0
}. The set of possible

extended transition counts is denoted as Dsl
sk

⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
,T⇤

, ◆
⇤
init,AP, L⇤

,⇥), both over set ⇥. We say M⇤
⇥ is an expan-

sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
init. The extended labelling map L

⇤ is a trivial extension of L,
assigning labels L(s) for s 2 S and an empty label to S

⇤ \ S.

Hidden Data 
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Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised
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erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
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⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
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Parameter similar states. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities ✓j and 1 � ✓j , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(✓j) = Dir(Ds1 +Ds2 + ↵s1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC M⇥ = (S,T, ◆init,AP, L,⇥). We wish to define a new parameterised
DTMC M⇤

⇥ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
✓ based on collected training data D, and so if M⇤

⇥ is equivalent to M⇥, the
probabilities of reaching a set of states in M⇥ must be the same as reaching the
equivalent states in M⇤

⇥, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S
⇤, such that

S ⇢ S
⇤: all states of S

⇤ not in S are defined as hidden. ⌦ denotes the set
of finite paths ! in M⇥, and ⌦

⇤ denotes the set of finite paths !
⇤ in M⇤

⇥.
Then any observed state sequence consists only of states in S, and the states in
S
⇤ \ S remain hidden from the observations. The data set D over the states S

consists of transition counts Dsl
sk for pairs sk, sl 2 S. Observe that for the set of

states S
⇤ the data is incomplete, namely it does not represent the actual state

transitions but only the observed ones. For an observed transition count D
sl
sk ,

we introduce the extended set D
sl
sk

⇤ as the collection of counts over all hidden
paths from sk to sl. Consider states s0 and s2, and hidden state s⇤0 in Figure 3a:
hidden paths from s0 to s2 can be of the form {s0, s2}, {s0, s⇤0, s2} 2 ⌦

⇤, with

the associated extended data count Ds2
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}. The set of possible

extended transition counts is denoted as Dsl
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⇤ for the pair (sk, sl), and D⇤ for
all transitions – note they are set-valued mappings of Dsl

sk and D, respectively.

Definition 5 Consider parameterised Markov chains M⇥ = (S,T, ◆init,AP, L,⇥)
and M⇤

⇥ = (S⇤
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,⇥), both over set ⇥. We say M⇤
⇥ is an expan-

sion of M⇥ if, for all D and for all ✓ 2 ⇥,

PM(✓)(D) = PM⇤(✓)(D⇤),

and if ◆init = ◆
⇤
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⇤ is a trivial extension of L,
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application of both state splitting cases (cf. Fig. 3b) induces again an expanded
parameterised Markov chain as per Def. 5.

Lemma 2. State splitting of M⇥ (Case II) generates an expansion of M⇥.

We are led to the following result.

Theorem 2. Any linearly parameterised Markov chain can be expanded into a
basic parameterised Markov chain by application of Lemma 1 and 2.

Bayesian inference with missing data We now consider Bayesian inference
on the newly expanded Markov chain M⇤

⇥. The data set D, which is sampled
from our system, corresponds to a state trajectory or set of trajectories over the
modelM⇥. This set further comprises only part of the corresponding trajectories
in the expanded model M⇤

⇥. For a given trajectory in D, we refer to D
⇤ as the

completed trajectory, and to D⇤ as the set of all possible completions D⇤. Note
the expanded parametric Markov chain has a basic parameterisation, hence for a
given completed data set D⇤ the Bayes rule as elaborated in (1) can be applied
to obtain p(✓|D⇤). For M⇤

⇥ Bayes rule can be applied over the hidden data as
follows:

p (✓|D) =

P
D⇤2D⇤ p (✓, D⇤

, D)

P(D)
=

P
D⇤2D⇤ p (✓|D⇤

, D)P(D⇤|D)P(D)

P(D)

=
P

D⇤2D⇤ p (✓|D⇤)P(D⇤|D).

Completed data sets have a multinomial distribution dependent on the parame-
terisation, hence the distribution of D⇤ is given as P(D⇤) =

R
⇥ P(D⇤|✓)p (✓) d✓.

For a given D the conditional distribution P(D⇤|D) is P(D⇤|D) = P(D⇤)/P(D),
with D

⇤ 2 D⇤ and P(D) =
P

D⇤

R
⇥ P(D⇤|✓)p (✓) d✓.

Remark 1. Realisations of the posterior can be obtained without computing the
entire integral as follows. A set of realisations ✓i for i 2 {1, . . . ,N} with proba-
bility density function p (✓|D) can be obtained by generating samples D

⇤
i with

distribution P(D⇤|D) and subsequently generating samples ✓i with distribution
p (✓|D⇤

i ) for all i 2 {1, . . . ,N}. These samples can then directly be used to per-
form the confidence calculation as in Sec. 6. ut

Algorithm 1 presents the state expansion procedure, and Algorithm 2 in the
next section summarises how to obtain a realisation of the posterior p(✓ | D⇤),
and to integrate it with the confidence computation.

6 Bayesian verification: computation of confidence

In this section we detail the final phase of our method: a quick procedure com-
putes a confidence estimate for the satisfaction of a PCTL specification formula
� by a system S of interest, namely S |= �. Our method takes as input a poste-
rior distribution over ⇥, obtained using Bayesian inference in Sec. 5.2, and the
feasible set for the parameters, obtained by parameter synthesis in Sec. 4.
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Algorithm 1 Markov chain expansion (M⇥)

M⇤
⇥  M⇥

for all si 2 S⇤ do . Case I: transition splitting
for all T⇤

✓(si, sj) = k0 +
P

l2L kl✓l do
S⇤  {s⇤ij,l}l2L [ sij,0
T⇤

✓(si, sj) := 0
T⇤

✓(si, s
⇤
ij,0) := k0 and T⇤

✓(s
⇤
ij,0, sj) := 1

for all l 2 L do
T⇤

✓(si, s
⇤
ij,l) := kl✓l and T⇤

✓(s
⇤
ij,l, sj) := 1

for all si 2 S⇤ do . Case II: state splitting
if 9sk 2 S⇤ : T⇤

✓(si, sk) = 1� k0 �
P

l2L kl✓l then
T⇤

✓(si, sk) := 1� k0 �
P

l2L kl
for all T⇤

✓(si, sm) = kl✓l do
S⇤  s⇤m0

T⇤
✓(si, sm) := 0 , T⇤

✓(si, s
⇤
m0) := kl and T⇤

✓(s
⇤
m0 , sk) := 1� ✓l

T⇤
✓(s

⇤
m0 , sm) := ✓l

return M⇤
⇥ . return expanded DTMC

Definition 6. Given a PCTL specification �, a complete trace (sample trajec-
tory) D of the system S up to time t, and a transition function T, the confidence
S |= � can be quantified by Bayesian Inference as

P(S |= � | D) =
R
⇥ f�(✓)p(✓ | D)d✓. (4)

As we only consider the satisfaction of a property S |= � as a binary-valued
mapping from the space of parameters, the satisfaction function in (4), f� :
⇥ ! {0, 1}, (4) can be reformulated as:

P(S |= � |D) =
R
⇥�

p(✓ | D)d✓, (5)

where ⇥� denotes the set of parameters corresponding to models verifying the
property � (as generated by PRISM). Further, given the independent posterior
distributions for each parameter in ✓ resulting from Sec. 5.2, the confidence
can be computed as P(S |= � |D) =

R
⇥�

Q
✓i2✓ p(✓i | D)d⇥. The integral of a

Dirichlet distribution can be obtained by iterative or numerical methods: here we
use a simple Monte-Carlo approach, which depends on samples of the posterior
distribution as clarified in Algorithm 2.

7 Experiment results

We show our approach requires smaller amounts of data than statistical model
checking (SMC) to verify the system satisfies a given quantitative specification
up to a prescribed confidence level. We further claim our approach is more
robust than standard SMC in situations where only data of limited trace length
is available.

6

Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification � and a data set D, the confidence S |= �

can be quantified via inference as P (S |= � | D) =
R
⇥ f�(✓)p (✓ | D) d✓, where

P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over M⇥, expressed as the a-posteriori p (✓ | D) given
the data set D and the uncertainty distribution p (✓) over the parameter set ⇥.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sec. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, f�(✓) =
P (M(✓) |= �), is equal to 1. We denote this set ⇥�, namely

⇥� = {✓ 2 ⇥ : M(✓) |= �}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking ap-
proach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or su�ciently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

θj = 0 θj = 1 
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