Automated Experiment Design for Data-Efficient
Verification of Parametric Markov Decision
Processes

E. Polgreen!, V. Wijesuriyal, S. Haesaert2, A. Abate!l

1Department of Computer Science, University of Oxtord

2Department of Electrical Engineering, TU Eindhoven

QEST 2017 |




Introduction

Veritying real systems is hard; tull models are
difficult to obtain

Data-based verification requires a lot of data

2016: Bayesian verification framework for Markov
chains

Now: Markov Decision Processes, using automated

experiment design
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Parametric Markov Decision Process

initial state atomic propositions

set of actions
finite, non-empty set 0f states labellmg function

S Act T@,LG@t,AP L @

Te = transition probability functzon

© =set of all possible evaluations of 6
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PCTL properties

We are able to consider any property that is compatible

with the PRISM parameter synthesis tool. We focus on
non-nested PCTL:

P> 5(true U complete)
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Parameter Synthesis

We use PRISM to synthesise the feasible set of
parameters, for which the model satisfies the property:

01

P~ q.5(true U complete)
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Data

We collect data from the underlying system in the form of
finite number of finite traces

We turn this into transition counts, group by parameter

ng = Z DSi,Oék,Sl for T(Si,&k, Sl) — (9j

s;€S,s1€S,aEAct

D_g. = Z Ds, a,.s, for T(s;, ak,s1) #0; ANIsy, € S T(s;, ok, 5m) = 0;
s;€S,s51€8,aEAct



Bayesian Inference

prior
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binomial

distribution
Conjugate prior = Dirichlet
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Bayesian Inference

p(0; | D)

COUNT [1 - 6] 23 /

COUNT [6;] 4 0 =0
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Confidence Calculation

P(S = ¢|D) = Jg, p(6 | D)db

O, ={0 € ©:M(0) = ¢}

p(0; | D)

Note: we use
simple Monte
Carlo to compute
the integral.
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Experiment design

Some data is more useful than other data, i.e., it tells us more
about whether the property is satisfied by the system. e.g.,

traces with no parameterised transitions are useless

knowledge about some parameters is more useful than others.




Experiment design

The “utility” of data containing a parameter is a function of

the posterior distribution for a parameter, and the feasible set:

p(0; | D) p(0; | D)




Experiment design

We estimate the “utility” of picking an action by predicting
the confidence after we take the action:

Cg’lsd / <LS,Oz (Dei,—lei))d07
e

¢9€9

We can then estimate “information gain” and assign it to a
state-action pair as a reward:

=10.5 — CP%4| — 0.5 — C|



Experiment design

- We compute the information gain for every state-action pair
in the MDP

For a trace of length N, the optimal information gain is then:

<’maxa€Act(S)(Gs,a +5(T(s,a,8").25FY))  if0<t< N

S,

0 itt > N.

»n

\

(55, depends on the distribution of the parameters at time t



Experiment design

The memory dependence of the information gain makes finding
the optimal strategy hard

To simplify the problem we consider only memoryless strategies

System

data ]strategy

Bayesian inference:

. Aol feasible set of
POt HaLyse parameters

update prior memoryless |
distributions strategies




Experiment design




Evaluation

+  Previous work has shown that the Bayesian verification framework
uses data more efficiently than other statistical methods

- We compare our automated experiment design with the basic
Bayesian verification framework using no strategy (randomly selecting
actions)
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Conclusions

We have extended the Bayesian verification framework to systems

with external non-determinism

We have shown that automated experiment design reduces the
amount of data needed

Improvements to the experiment design

Other frameworks: continuous time
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Evaluation

+  Previous work has shown that the Bayesian verification framework
uses data more efficiently than other statistical methods

- We compare our automated experiment design with the basic
Bayesian verification framework using no strategy (randomly selecting

actions)
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Markov chain expansion

What if a parameter appears multiple times in a linear
pMC, in different linear equations? How do we combine the
posterior distributions?
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Markov chain expansion

We “expand” the transitions with linear parameterisation, to
turn the MC into a basic pMC. i.e., transitions have only one

parameter.
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Markov chain expansion

We “expand” the transitions with linear parameterisation, to
turn the MC into a basic pMC. i.e., transitions have only one

parameter.
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Hidden Data

We now have a data set with gaps in. We know the

transitions counts only for the original transitions.
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Hidden Data

We apply Bayes’ rule

BreE ﬂ<jg o
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original data expanded data

/

p(0|D) = 2 p-cp+ p (0|D%) P(D*[D)

set of all possible completions of the expanded data



Hidden Data

We use sampling to obtain a realisation of the posterior

distribution, without evaluating the integral

p(0|D) = 2 p-ep- p(0|D) P(D*[D)

p(0|D;)
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