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Is formal synthesis dead yet?



• Solving formal synthesis by guiding enumerative synthesis 
with LLMs

• Generating syntactically correct models for verification, via 
LLMs, synthetic programming elicitation and Max-SMT 
solvers

Two methods for making the most out of 
LLMs in synthesis:
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Can LLMs solve formal synthesis problems?

5



6

∃"∀$. &(", $)
Does there exist a function ! such that, for all possible 
inputs ", the specification # will evaluate to true for ! 
and ".

# is a quantifier free formula in a background theory, 
e.g., Linear Integer Arithmetic

Formal Program Synthesis
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Single function benchmarks from the SyGuS competition, with function names 
removed and the full grammar from the logic permitted and a timeout of 180s
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These are the results 
after some effort 
prompt engineering. 
Initial results were 
much worse.

Can LLMs solve formal synthesis problems?



12

Sort of.. but we think we can do better

Can LLMs solve formal synthesis problems?



LLMs

Enumerative 
synthesis

13



LLMs

Enumerative 
synthesis

14



SYNTHESIZE

VERIFY

∃"∀$. &(", $)
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Algorithms for formal synthesis
Counterexample Guided Inductive Synthesis

Combinatorial sketching for finite programs - Solar Lezama et al



Three approaches:

1. Prompt and verify

2. Use the LLM as pre-trained syntactic guidance

3. Use the LLM as an integrated syntactic oracle

21

LLMs

Enumerative 
synthesis



Approach 1: prompt and verify

22

VERIFYPROMPT solutionspec
guess

reprompt?



The right prompts?

• This is not a prompt engineering paper!

• We took some prompt engineering techniques from the literature, and tested them on 
a small sample of benchmarks.

• The space is huge, a much bigger search could be done.

23
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Role[1]

[1] Better Zero-Shot Reasoning with Role-Play Prompting – Kong et al

The right prompts?



25

Ask in Lisp[2]Role[1]

[2] "What It Wants Me To Say": Bridging the Abstraction Gap Between End-User 
Programmers and Code-Generating Large Language Models – Liu et al

The right prompts?
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Ask in Lisp[2]

Emotional stimuli [3]

Role[1]

[3] Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., Xie,
X.: Large language models understand and can be enhanced by emotional stimuli.

The right prompts?
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Ask for LLM explanation for 
invariant constraints [4]

[4] Chain-of-Thought Prompting Elicits Reasoning in Large Language 
Models – Wei et al

The right prompts?
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Retry if the solution is incorrect

The right prompts?



Number of iterations
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VERIFYPROMPT
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iteration 4
Iteration 5
Iteration 6

We halt after 6 iterations, 
as number of new 
solutions tails off 
significantly



Results: prompt and verify
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Approach 2: Pre-trained guidance

31

LLMs

Enumerative 
synthesis

VERIFYPROMPT

SYNTHESIZE

VERIFY

spec
pCFG

spec

solution

Use the LLM to generate a pre-trained model
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“Pre-trained” guidance from LLMs

If the LLM guesses are wrong, perhaps the solution is still 
in the neighborhood of those guesses?

Model that neighborhood as a probabilistic grammar.
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Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)? x : y 

(x ≥ y)? x : 0

(y ≤ x)? x : y

(y ≥ x)? x : y

x y 

S → 0 (1)| 1(1) | 2(1)
S → y (1)| x (1)
S → B ? S:S (1)
B → S = S (1)
B → S ≥ S (1)
B → S ≤ S (1)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)
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Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)? x : y 

(x ≥ y)? x : 0

(y ≤ x)? x : y

(y ≥ x)? x : y

x y 

S → 0 (3)| 1(1) | 2(1)
S → y (7)| x (10)
S → B ? S:S (5)
B → S = S (1)
B → S ≥ S (4)
B → S ≤ S (2)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)
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Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)? x : y 

(x ≥ y)? x : 0

(y ≤ x)? x : y

(y ≥ x)? x : y

x y 

S → 0 (0.11)| 1(0.04) | 2(0.04)
S → y (0.26)| x (0.37)
S → B ? S:S (0.19)
B → S = S (0.1)
B → S ≥ S (0.4)
B → S ≤ S (0.2)
B → !B (0.1)
B → B ∨ B (0.1)
B → B ∧ B (0.1)



!! = (0, Σ, 2, 3, ℙ):
• 0 is a set of nonterminal symbols

• Σ is a set of terminal symbols

• 2 ⊆ 0×(0 ∪ Σ)∗ is a set of production rules 

• 3 is a start symbol

• ℙ is a probability mass function that assigns a probability ℙ[9] to each 9 ∈ 2

probabilistic Context-Free Grammar

36



• Initialize expression with the Start 
symbol

• Repeatedly choose production 
rules to replace the left-most non-
terminal in the current expression

• Choice is made by sampling from 
distribution over possible 
production rules

• Repeat until depth limit is hit or 
complete program is found

42

! → 1 | 2
& → & + & | !

!

" ! + !

" + ! ! + ! + !

1 + ! 2 + !

1 + "

1 2

1 + 1 1 + 2

1 + ! + !

Top down enumeration



• Initialize expression with the Start 
symbol

• Repeatedly choose production 
rules to replace the left-most non-
terminal in the current expression

• Choice is made by sampling from 
distribution over possible 
production rules

• Repeat until depth limit is hit or 
complete program is found

• If depth limit: complete the 
program
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! → 1 | 2
& → & + & | !

!

" ! + !

" + ! ! + ! + !

1 + ! 2 + !

1 + "

1 2

1 + 1 1 + 2

1 + ! + !

Top down enumeration



• Initialize expression with the Start 
symbol

• Repeatedly choose production 
rules to replace the left-most non-
terminal in the current expression

• Choice is made by sampling from 
distribution over possible 
production rules

• Repeat until depth limit is hit or 
complete program is found

• If complete, return for verification

44

! → 1 | 2
& → & + & | !

!

" ! + !

" + ! ! + ! + !

1 + ! 2 + !

1 + "

1 2

1 + 1 1 + 2

1 + ! + !

Top down enumeration



• Queue stores partial programs with 
scores

• Initialize queue with the Start 
symbol

A* enumeration

[1] Accelerating search-based program synthesis using learned 
probabilistic models - Lee et al45

! → 1 | 2
& → & + & | !

!

Score = cost so far + estimate of cost to 
complete program



• Queue stores partial programs with 
scores

• Initialize queue with the Start 
symbol

• Pop partial program from queue 
with best score and expand

[1] Accelerating search-based program synthesis using learned 
probabilistic models - Lee et al46

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to 
complete program

" ! + !

!

A* enumeration
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• Queue stores partial programs with 
scores

• Initialize queue with the Start 
symbol

• Pop partial program from queue 
with best score and expand

• Repeat until complete program 
found
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• Queue stores partial programs with 
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• Initialize queue with the Start 
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• Pop partial program from queue 
with best score and expand
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found

[1] Accelerating search-based program synthesis using learned 
probabilistic models - Lee et al50

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to 
complete program

! + !" + ! ! + ! + !"

A* enumeration



• Queue stores partial programs with 
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• Initialize queue with the Start 
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with best score and expand

• Repeat until complete program 
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• Queue stores partial programs with 
scores

• Initialize queue with the Start 
symbol

• Pop partial program from queue 
with best score and expand

• Repeat until complete program 
found
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• Queue stores partial programs with 
scores

• Initialize queue with the Start 
symbol

• Pop partial program from queue 
with best score and expand

• Repeat until complete program 
found
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• Queue stores partial programs with 
scores

• Initialize queue with the Start 
symbol

• Pop partial program from queue 
with best score and expand

• Repeat until complete program 
found

[1] Accelerating search-based program synthesis using learned 
probabilistic models - Lee et al54

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to 
complete program

! + !" + ! ! + ! + ! 1 2

A* enumeration
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Results: pre-trained guidance
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Comparison with unguided enumerators
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Approach 3: synthesis with a syntactic 
oracle LLMs

Enumerative 
synthesis

SYNTHESIZE

VERIFY

spec

solution

updated 
pCFG

synthesiser
state

Use the LLM within a syntactic oracle

Prompt



Synthesis
∃". ∀%! . &(", %)

This is my 
progress so far

Suggested 
pCFG

• Send:

• partially enumerated programs

• counterexamples from previous iterations

• incorrect solutions from previous iteration

• Return:

• Helper functions

• Which we turn into: updated pCFG with 
new production rules and updated 
distributions

58

2 way communication:
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Sure, here are 
some helper 

functions:



Synthesis
∃". ∀%! . &(", %)

This is my 
progress so far

Suggested 
pCFG

• Updating the pCFG:

• parse all helper functions, and update 
the pCFG distributions as before

• add any new helper functions as new 
production rules to any applicable non-
terminal. 

61
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Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)

(x ≥ y)

S → 0 (3)| 1(1) | 2(1)
S → y (7)| x (10)
S → B ? S:S (5)
B → S = S (1)
B → S ≥ S (4)
B → S ≤ S (2)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)
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Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)

(x ≥ y)

S → 0 (4)| 1(1) | 2(1)
S → y (8)| x (12)
S → B ? S:S (5)
B → S = S (1)
B → S ≥ S (6)
B → S ≤ S (2)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)
B → x ≥ 0 (1)
B → x ≥ y (1)



Synthesis
∃". ∀%! . &(", %)

This is my 
progress so far

Suggested 
pCFG

• Dynamically updating the probability 
distribution over grammar rules allows the 
oracle to make mistakes

• Cheaper prompts!

64
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Results: syntactic oracle
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Comparison with unguided enumerators
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SYNTHESIZE

VERIFY

PROMPT
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Not quite as good.. but 
it is faster, and if we 
combine with the pre-
calls to the LLM it gets 
a lot better…

Results: syntactic oracle
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Results: syntactic oracle
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Combine standalone LLM with syntactic oracle 
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Results: solving time
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Results

• Enumerative solvers are very good at problems with short solutions

• Conversely, LLMs are bad at problems with short solutions

• The pre-trained LLM guidance + enumerator is the best at long solutions

• The LLM alone performs poorly in the bitvector domain, but sees the biggest gains in 
combination with the enumerator

LLMs

Enumerative 
synthesis
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Related work

LLMs for program lifting [5]

● Spec restricted to ∃". ∀%. " % = '()(%), where '() is a reference implementation

● LLMs outperform enumeration (solving 99% of the benchmarks vs 94%)

HYSYNTH [6]

● Uses an LLM to guide bottom-up search

● Reports similar results (LLM + search outperforms LLM and search)

[5] Verified Code Transpilation with LLMs – Bhatia et al
[6] HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis –
Barke et al
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Conclusions (part 1)

• LLMs are still not able to outperform state-of-the-art enumerative solvers by themselves

• But the combination of LLMs plus enumerative synthesis outperforms enumerative 
synthesis, and stand-alone LLMs

• (Even with naively implemented enumerators) ??



• Solving formal synthesis by guiding enumerative synthesis with LLMs:

• Generating syntactically correct models for verification, via LLMs, 
synthetic programming elicitation and Max-SMT solvers

Two methods for making the most out of LLMs in synthesis:



But can we be more ambitious?



Synthesis = Automatically generating 
code that satisfies the user’s 

specification

75



Synthesis = Automatically generating 
code that satisfies the user’s 

specification

76

(even natural language specifications)



Given a natural language description, generate a 
system model for verification

77

module main {

// System description.

var a, b : integer;

init {

a = 0;

b = 1;

}

next {

a', b' = b, a + b;

}

// System specification.

invariant a_le_b: a <= b;

// Proof script.

control {

induction;

check;

}

}
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Way beyond enumerative synthesis 
without serious user guidance.



Way beyond enumerative synthesis 
without serious user guidance.

80

(even much smaller problems are out of reach of the 
state-of-the-art enumerative solvers)



What about LLMs?

81

Related work suggests this is worth a try.. 



0

25

50

75

100

GPT4

GPT3
.5

Fin
e-t

un
ed

 3.
5

%

Did not parse
wrong
mostly wrong
half correct
mostly correct
totally correct

Syntax errors are a problem!
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[13] What’s wrong with your code generated by large language models? An Extensive Study  - Duo et al
[14] Towards AI assisted synthesis of verified Dafny methods - Misu et al 
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Results for GPT-4 [13][14], all pass@1 except Dafny

Syntax errors are a problem!



Syntax errors are a problem!

0

25

50

75

100

Hum
an

Eva
l

MBPP plus

APPS plus
RWBP

Dafn
y

UCLID
5

Syntax Errors
Semantic Errors
Correct

Python Dafny UCLID5

High resource low resource

Especially for very low-
resource languages!!

[13] What’s wrong with your code generated by large language models? An Extensive Study  - Duo et al
[14] Towards AI assisted synthesis of verified Dafny methods - Misu et al 

Results for GPT-4 [13][14], all pass@1 except Dafny



Especially for very low-
resource languages!!

Internal/
proprietary 

APIs

Tool specific 
verification/
specification 

languages

New DSLs, 
e.g., for 

new 
hardware



Given a natural language description, generate a 
system model for verification

86

module main {

// System description.

var a, b : integer;

init {

a = 0;

b = 1;

}

next {

a', b' = b, a + b;

}

// System specification.

invariant a_le_b: a <= b;

// Proof script.

control {

induction;

check;

}

}



Synthetic Programming Elicitation and 
Repair for Text-to-Code in Very Low-
Resource Programming Languages

87

Federico Mora1 Justin Wong1 Haley Lepe2 Sahil Bhatia1 Karim Elmaaroufi1
George Varghese3 Joseph E. González1 Elizabeth Polgreen4 Sanjit A. Seshia1

1UC Berkeley 2MiraCosta Community College 
3UCLA 4University of Edinburgh 
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Natural programming elicitation:

“asking non-programmers or novice programmers to 
express programs with the concepts and 
abstractions they find most natural” [7]

Coined by Brad Myers in 2004 [8]

Once you know what people “naturally” do, design 
for it.

[7] How statically-typed functional programmers write code - Lubin et al
[8] Natural programming languages and environments – Myers et al
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Synthetic programming elicitation: the 
same but for LLMs



Prompt engineering: 
trying to persuade the 
LLM to do what you want

Our approach: observe what 
the LLM does, and design a 
DSL for the LLM.

Synthetic programming elicitation: the 
same but for LLMs



Synthetic programming elicitation and repair

If we can’t fix the errors, 
give the LLM guidance to 
get it back to the DSL

If the LLM goes wrong, 
and we can fix it with 
force, we do.



Design a DSL for 
the LLM

Parse response 
generously

Repair via SMT 
solver Repair via LLM

Overview

DSL



Design a DSL for 
the LLM

Parse response 
generously

Repair via SMT 
solver Repair via LLM

Overview

DSL
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• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL
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• Participant: gpt-4-0613

• Data:

• 82 UCLID5 regression tests

• Each test consists of:

• A description string

• UCLID5 code

• Tasks (for each test):

• Ask the LLM to write Python code that implements the test description

Choosing the DSL



96

• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL
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Choosing the DSL

Example task:
# You are an expert user of FormalVerificationLibrary, a Python 
API for the formal modeling and verification of transition 
systems and procedures. Please write Python code using the 
FormalVerificationLibrary API that fits the description below. 
Do not worry if you do not remember the names of particular 
functions or classes.

# The module has two integer variables and two bitvector
variables. It should use inline assertions in the init block to 
check that we can correctly divide two integers, and correctly 
divide two bitvectors. It should check that signed and unsigned 
division report different results for very big bitvectors.

Generic 

Prompt

Task 

Specific



98

• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL
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Choosing the DSL

Example respose:



100

Choosing the DSL

Another example task:
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Choosing the DSL

Another example response
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• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL



Very object oriented!

When common Python uses a feature, the LLM will use it 

Otherwise, the LLM will find a workaround using imports

None of the outputs were syntactically incorrect Python code (parsable)

103

Choosing the DSL



Very object oriented!

When common Python uses a feature, the LLM will use it 

Otherwise, the LLM will find a workaround using imports

None of the outputs were syntactically incorrect Python code (parsable)
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Choosing the DSL

Note that there was no 
DSL for UCLID5 in Python 
like this before.



The DSL
- is a strict subset of Python
- every string in the DSL can be translated to syntactically correct UCLID5 
code

105

Choosing the DSL
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• We can now use minimal prompting to interface to the LLM

Write python code to complete the 
following task:

[TASK]

Reply with your code inside one 
unique code block.

[Describe FormalVerificationLibrary]

I can definitely do that. 
Here’s the code:

[…]

Choosing the DSL



Design a DSL for 
the LLM

Parse response 
generously

Repair via SMT 
solver Repair via LLM

Overview

DSL



108

Finding the largest subtree

• Given a response, parse it using a parser for Python 

Python 
Parser

LLM 
output

Python AST
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Finding the largest subtree

• Given a response, parse it generously using an error-tolerant parser for Python 

Python 
Parser

LLM 
output

Python AST

?

Any error nodes are 
marked and replaced with 
holes



110

Finding the largest subtree

• Given a response, parse it generously using an error-tolerant parser for Python 

Python 
Parser

LLM 
output

Python AST

?

Recursive 
descent 
pruning

• prune anything not in the DSL

??
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Finding the largest subtree

• Given a response, parse it generously using an error-tolerant parser for Python 

Python 
Parser

LLM 
output

Python AST

?

Recursive 
descent 
pruning

• prune simple things not in the DSL

??

static 
checks 

with Max-
SMT solver

??

?

DSL AST

• use a Max-SMT solver to find other syntax violations



Finding the largest subtree

Max-SMT encoding, inspired by [9]:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL

• Find the maximum set of satisfiable clauses, and replace all other nodes with holes

[9] Finding Minimum Type Error Sources - Pavlinovic et al



Finding the largest subtree

Max-SMT encoding:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL

• Find the maximum set of satisfiable clauses, and replace all other nodes with holes

var x: bv32

x:=0;

• x is a bitvector

• 0 is an integer

• x is an integer



Finding the largest subtree

Max-SMT encoding:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL
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Finding the largest subtree

Max-SMT encoding:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL

• Find the maximum set of satisfiable clauses, and replace all other nodes with holes

• x is a ??

• 0 is an integer

• x is an integer

var x: ??

x:=0;
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Model-driven repair

Once we have a set of satisfiable clauses, we can use the satisfying model to 
repair (some of) the program:

• x is a ??

• 0 is an integer

• x is an integer

var x: ??

x:=0;
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Model-driven repair

Once we have a set of satisfiable clauses, we can use the satisfying model to 
repair (some of) the program:

• x is a ??

• 0 is an integer

• x is an integer

SAT when ?? is “integer”
If multiple assignments are 
valid, we use the one the 
SMT solver suggests.

var x: ??

x:=0;
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LLM-driven repair

Not everything can be repaired by the Max-SMT solver
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LLM-driven repair

If we can’t repair the program from the model, we ask the LLM to repair the 
holes:

Fix the following Python code by 
replacing every occurrence of “??” 
with the correct code.

[CODE WITH HOLES]

Make sure your code completes the 
following lines […]
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Eudoxus: ghost writing UCLID5
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Results
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All results are pass@1
Fine-tuning is done using 
all public UCLID5 
regression tests.
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Conclusion (part II)

0
25
50
75

100
125

When syntactic correctness is an issue, don’t prompt 
or fine-tune to force the LLM to learn the rules you 
want it to. 

Instead, use PL and formal techniques to meet the 
LLM in the middle
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Related work

Giving the LLM feedback via compiler errors [10]

● Needs good compiler errors

● Not very effective for Dafny anyway[11]

Constrained Decoding [12]

● Limited to checks that you can encode in a grammar

●Works well if the LLM is *reasonably close* to the grammar you want? 

[10] Fixing Rust Compilation Errors using LLMs  - Deligiannis et al 
[11] DafnyBench: A Benchmark for Formal Software Verification – Loughridge et al
[12] Efficient Guided Generation for Large Language Models – Willard and Louf



Not dead yet!

Conclusions
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Conclusions

• Semantic and Syntactic correctness are still challenges for LLMs

• especially in low resource languages and problem domains

• Formal methods and enumerative techniques might just be the answer to this!
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Conclusions

• Semantic and Syntactic correctness are still challenges for LLMs

• especially in low resource languages and problem domains

• Formal methods and enumerative techniques might just be the answer to this!

contact fmora@Berkeley.edu

Eudoxus @CAV:

talk@CAV, Saturday 27th 4pm
contact Yixuan.Li.cs@ed.ac.uk

Guiding enumerative synthesis 
@CAV:

mailto:fmora@Berkeley.edu
mailto:Yixuan.Li.cs@ed.ac.uk

