
Making The Most Out Of Large
Language Models For Program

Synthesis
(when you want correct results)

Elizabeth Polgreen
University of Edinburgh

SYNT 2024

Is formal synthesis dead yet?

• Solving formal synthesis by guiding enumerative synthesis
with LLMs

• Generating syntactically correct models for verification, via
LLMs, synthetic programming elicitation and Max-SMT
solvers

Two methods for making the most out of
LLMs in synthesis:

4

Guiding Enumerative Synthesis with
Large Language Models

Yixuan Li Julian Parsert Elizabeth Polgreen

CAV, Saturday 27th 4pm
yixuan.li.cs@ed.ac.uk

Can LLMs solve formal synthesis problems?

5

6

∃"∀$. &(", $)
Does there exist a function ! such that, for all possible
inputs ", the specification # will evaluate to true for !
and ".

is a quantifier free formula in a background theory,
e.g., Linear Integer Arithmetic

Formal Program Synthesis

11

Single function benchmarks from the SyGuS competition, with function names
removed and the full grammar from the logic permitted and a timeout of 180s

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

GPT3.5 pass@1 cvc5

These are the results
after some effort
prompt engineering.
Initial results were
much worse.

Can LLMs solve formal synthesis problems?

12

Sort of.. but we think we can do better

Can LLMs solve formal synthesis problems?

LLMs

Enumerative
synthesis

13

LLMs

Enumerative
synthesis

14

SYNTHESIZE

VERIFY

∃"∀$. &(", $)

15

Algorithms for formal synthesis
Counterexample Guided Inductive Synthesis

Combinatorial sketching for finite programs - Solar Lezama et al

Three approaches:

1. Prompt and verify

2. Use the LLM as pre-trained syntactic guidance

3. Use the LLM as an integrated syntactic oracle

21

LLMs

Enumerative
synthesis

Approach 1: prompt and verify

22

VERIFYPROMPT solutionspec
guess

reprompt?

The right prompts?

• This is not a prompt engineering paper!

• We took some prompt engineering techniques from the literature, and tested them on
a small sample of benchmarks.

• The space is huge, a much bigger search could be done.

23

24

Role[1]

[1] Better Zero-Shot Reasoning with Role-Play Prompting – Kong et al

The right prompts?

25

Ask in Lisp[2]Role[1]

[2] "What It Wants Me To Say": Bridging the Abstraction Gap Between End-User
Programmers and Code-Generating Large Language Models – Liu et al

The right prompts?

26

Ask in Lisp[2]

Emotional stimuli [3]

Role[1]

[3] Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., Xie,
X.: Large language models understand and can be enhanced by emotional stimuli.

The right prompts?

27

Ask for LLM explanation for
invariant constraints [4]

[4] Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models – Wei et al

The right prompts?

28

Retry if the solution is incorrect

The right prompts?

Number of iterations

29

VERIFYPROMPT

0

17.5

35

52.5

70

BV LIA Inv

so

lv
ed

Iteration 1
iteration 2
Iteration 3
iteration 4
Iteration 5
Iteration 6

We halt after 6 iterations,
as number of new
solutions tails off
significantly

Results: prompt and verify

30

VERIFYPROMPT

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

GPT3.5 pass@1 Prompt and verify cvc5

Approach 2: Pre-trained guidance

31

LLMs

Enumerative
synthesis

VERIFYPROMPT

SYNTHESIZE

VERIFY

spec
pCFG

spec

solution

Use the LLM to generate a pre-trained model

32

“Pre-trained” guidance from LLMs

If the LLM guesses are wrong, perhaps the solution is still
in the neighborhood of those guesses?

Model that neighborhood as a probabilistic grammar.

33

Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)? x : y

(x ≥ y)? x : 0

(y ≤ x)? x : y

(y ≥ x)? x : y

x y

S → 0 (1)| 1(1) | 2(1)
S → y (1)| x (1)
S → B ? S:S (1)
B → S = S (1)
B → S ≥ S (1)
B → S ≤ S (1)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)

34

Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)? x : y

(x ≥ y)? x : 0

(y ≤ x)? x : y

(y ≥ x)? x : y

x y

S → 0 (3)| 1(1) | 2(1)
S → y (7)| x (10)
S → B ? S:S (5)
B → S = S (1)
B → S ≥ S (4)
B → S ≤ S (2)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)

35

Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)? x : y

(x ≥ y)? x : 0

(y ≤ x)? x : y

(y ≥ x)? x : y

x y

S → 0 (0.11)| 1(0.04) | 2(0.04)
S → y (0.26)| x (0.37)
S → B ? S:S (0.19)
B → S = S (0.1)
B → S ≥ S (0.4)
B → S ≤ S (0.2)
B → !B (0.1)
B → B ∨ B (0.1)
B → B ∧ B (0.1)

!! = (0, Σ, 2, 3, ℙ):
• 0 is a set of nonterminal symbols

• Σ is a set of terminal symbols

• 2 ⊆ 0×(0 ∪ Σ)∗ is a set of production rules

• 3 is a start symbol

• ℙ is a probability mass function that assigns a probability ℙ[9] to each 9 ∈ 2

probabilistic Context-Free Grammar

36

• Initialize expression with the Start
symbol

• Repeatedly choose production
rules to replace the left-most non-
terminal in the current expression

• Choice is made by sampling from
distribution over possible
production rules

• Repeat until depth limit is hit or
complete program is found

42

! → 1 | 2
& → & + & | !

!

" ! + !

" + ! ! + ! + !

1 + ! 2 + !

1 + "

1 2

1 + 1 1 + 2

1 + ! + !

Top down enumeration

• Initialize expression with the Start
symbol

• Repeatedly choose production
rules to replace the left-most non-
terminal in the current expression

• Choice is made by sampling from
distribution over possible
production rules

• Repeat until depth limit is hit or
complete program is found

• If depth limit: complete the
program

43

! → 1 | 2
& → & + & | !

!

" ! + !

" + ! ! + ! + !

1 + ! 2 + !

1 + "

1 2

1 + 1 1 + 2

1 + ! + !

Top down enumeration

• Initialize expression with the Start
symbol

• Repeatedly choose production
rules to replace the left-most non-
terminal in the current expression

• Choice is made by sampling from
distribution over possible
production rules

• Repeat until depth limit is hit or
complete program is found

• If complete, return for verification

44

! → 1 | 2
& → & + & | !

!

" ! + !

" + ! ! + ! + !

1 + ! 2 + !

1 + "

1 2

1 + 1 1 + 2

1 + ! + !

Top down enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

A* enumeration

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al45

! → 1 | 2
& → & + & | !

!

Score = cost so far + estimate of cost to
complete program

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al46

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

" ! + !

!

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al47

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

" ! + !

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

• Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al48

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

" ! + !

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

• Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al49

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

! + !

" + ! ! + ! + !

"

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

• Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al50

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

! + !" + ! ! + ! + !"

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

• Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al51

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

! + !" + ! ! + ! + !"

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

• Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al52

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

! + !" + ! ! + ! + !

"

1 2

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

• Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al53

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

! + !" + ! ! + ! + ! 1 2

A* enumeration

• Queue stores partial programs with
scores

• Initialize queue with the Start
symbol

• Pop partial program from queue
with best score and expand

• Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al54

! → 1 | 2
& → & + & | !

Score = cost so far + estimate of cost to
complete program

! + !" + ! ! + ! + ! 1 2

A* enumeration

55

Results: pre-trained guidance

VERIFYPROMPT

SYNTHESIZE

VERIFY

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

pass@1
Prompt and verify
pre-trained (top-down)
pre-trained (A*)
cvc5

56

Comparison with unguided enumerators

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

baseline (top down)
baseline (A*)
pre-trained (top-down)
pre-trained (A*)

57

Approach 3: synthesis with a syntactic
oracle LLMs

Enumerative
synthesis

SYNTHESIZE

VERIFY

spec

solution

updated
pCFG

synthesiser
state

Use the LLM within a syntactic oracle

Prompt

Synthesis
∃". ∀%! . &(", %)

This is my
progress so far

Suggested
pCFG

• Send:

• partially enumerated programs

• counterexamples from previous iterations

• incorrect solutions from previous iteration

• Return:

• Helper functions

• Which we turn into: updated pCFG with
new production rules and updated
distributions

58

2 way communication:

59

Sure, here are
some helper

functions:

Synthesis
∃". ∀%! . &(", %)

This is my
progress so far

Suggested
pCFG

• Updating the pCFG:

• parse all helper functions, and update
the pCFG distributions as before

• add any new helper functions as new
production rules to any applicable non-
terminal.

61

62

Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)

(x ≥ y)

S → 0 (3)| 1(1) | 2(1)
S → y (7)| x (10)
S → B ? S:S (5)
B → S = S (1)
B → S ≥ S (4)
B → S ≤ S (2)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)

63

Parser

S → 0 | 1 | 2
S → y | x
S → B ? S:S
B → S = S
B → S ≥ S
B → S ≤ S
B → !B
B → B ∨ B
B → B ∧ B

(x ≥ 0)

(x ≥ y)

S → 0 (4)| 1(1) | 2(1)
S → y (8)| x (12)
S → B ? S:S (5)
B → S = S (1)
B → S ≥ S (6)
B → S ≤ S (2)
B → !B (1)
B → B ∨ B (1)
B → B ∧ B (1)
B → x ≥ 0 (1)
B → x ≥ y (1)

Synthesis
∃". ∀%! . &(", %)

This is my
progress so far

Suggested
pCFG

• Dynamically updating the probability
distribution over grammar rules allows the
oracle to make mistakes

• Cheaper prompts!

64

65

Results: syntactic oracle

SYNTHESIZE

VERIFY

PROMPT

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

pass@1
Prompt and verify
pre-trained (top-down)
pre-trained (A*)
syntactic oracle (top-down)
syntactic oracle(A*)
cvc5

66

Comparison with unguided enumerators

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

baseline (top down)
baseline (A*)
syntactic oracle (top-down)
syntactic oracle(A*)

67

SYNTHESIZE

VERIFY

PROMPT

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

pass@1
Prompt and verify
pre-trained (top-down)
pre-trained (A*)
syntactic oracle (top-down)
syntactic oracle(A*)
cvc5

Not quite as good.. but
it is faster, and if we
combine with the pre-
calls to the LLM it gets
a lot better…

Results: syntactic oracle

68

Results: syntactic oracle

SYNTHESIZE

VERIFY

PROMPT

0

25

50

75

100

BV LIA Inv

%
 s

ol
ve

d

pass@1
Prompt and verify
pre-trained (top-down)
pre-trained (A*)
syntactic oracle (top-down)
syntactic oracle(A*)
combined (top down)
combined (A*)
cvc5

Combine standalone LLM with syntactic oracle

69

Results: solving time

0

25

50

75

100

BV LIA Inv

Ac
g.

 S
ol

vi
ng

 ti
m

e
(s

)

pass@1
Prompt and verify
pre-trained (top-down)
pre-trained (A*)
syntactic oracle (top-down)
syntactic oracle(A*)
combined (top down)
combined (A*)
cvc5

70

Results

• Enumerative solvers are very good at problems with short solutions

• Conversely, LLMs are bad at problems with short solutions

• The pre-trained LLM guidance + enumerator is the best at long solutions

• The LLM alone performs poorly in the bitvector domain, but sees the biggest gains in
combination with the enumerator

LLMs

Enumerative
synthesis

71

Related work

LLMs for program lifting [5]

● Spec restricted to ∃". ∀%. " % = '()(%), where '() is a reference implementation

● LLMs outperform enumeration (solving 99% of the benchmarks vs 94%)

HYSYNTH [6]

● Uses an LLM to guide bottom-up search

● Reports similar results (LLM + search outperforms LLM and search)

[5] Verified Code Transpilation with LLMs – Bhatia et al
[6] HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis –
Barke et al

72

Conclusions (part 1)

• LLMs are still not able to outperform state-of-the-art enumerative solvers by themselves

• But the combination of LLMs plus enumerative synthesis outperforms enumerative
synthesis, and stand-alone LLMs

• (Even with naively implemented enumerators) ??

• Solving formal synthesis by guiding enumerative synthesis with LLMs:

• Generating syntactically correct models for verification, via LLMs,
synthetic programming elicitation and Max-SMT solvers

Two methods for making the most out of LLMs in synthesis:

But can we be more ambitious?

Synthesis = Automatically generating
code that satisfies the user’s

specification

75

Synthesis = Automatically generating
code that satisfies the user’s

specification

76

(even natural language specifications)

Given a natural language description, generate a
system model for verification

77

module main {

// System description.

var a, b : integer;

init {

a = 0;

b = 1;

}

next {

a', b' = b, a + b;

}

// System specification.

invariant a_le_b: a <= b;

// Proof script.

control {

induction;

check;

}

}

78

79

Way beyond enumerative synthesis
without serious user guidance.

Way beyond enumerative synthesis
without serious user guidance.

80

(even much smaller problems are out of reach of the
state-of-the-art enumerative solvers)

What about LLMs?

81

Related work suggests this is worth a try..

0

25

50

75

100

GPT4

GPT3
.5

Fin
e-t

un
ed

 3.
5

%

Did not parse
wrong
mostly wrong
half correct
mostly correct
totally correct

Syntax errors are a problem!

0

25

50

75

100

Hum
an

Eva
l

MBPP plus

APPS plus
RWBP

Dafn
y

UCLID
5

Syntax Errors
Semantic Errors
Correct

[13] What’s wrong with your code generated by large language models? An Extensive Study - Duo et al
[14] Towards AI assisted synthesis of verified Dafny methods - Misu et al

Python Dafny UCLID5

Results for GPT-4 [13][14], all pass@1 except Dafny

Syntax errors are a problem!

Syntax errors are a problem!

0

25

50

75

100

Hum
an

Eva
l

MBPP plus

APPS plus
RWBP

Dafn
y

UCLID
5

Syntax Errors
Semantic Errors
Correct

Python Dafny UCLID5

High resource low resource

Especially for very low-
resource languages!!

[13] What’s wrong with your code generated by large language models? An Extensive Study - Duo et al
[14] Towards AI assisted synthesis of verified Dafny methods - Misu et al

Results for GPT-4 [13][14], all pass@1 except Dafny

Especially for very low-
resource languages!!

Internal/
proprietary

APIs

Tool specific
verification/
specification

languages

New DSLs,
e.g., for

new
hardware

Given a natural language description, generate a
system model for verification

86

module main {

// System description.

var a, b : integer;

init {

a = 0;

b = 1;

}

next {

a', b' = b, a + b;

}

// System specification.

invariant a_le_b: a <= b;

// Proof script.

control {

induction;

check;

}

}

Synthetic Programming Elicitation and
Repair for Text-to-Code in Very Low-
Resource Programming Languages

87

Federico Mora1 Justin Wong1 Haley Lepe2 Sahil Bhatia1 Karim Elmaaroufi1
George Varghese3 Joseph E. González1 Elizabeth Polgreen4 Sanjit A. Seshia1

1UC Berkeley 2MiraCosta Community College
3UCLA 4University of Edinburgh

88

Natural programming elicitation:

“asking non-programmers or novice programmers to
express programs with the concepts and
abstractions they find most natural” [7]

Coined by Brad Myers in 2004 [8]

Once you know what people “naturally” do, design
for it.

[7] How statically-typed functional programmers write code - Lubin et al
[8] Natural programming languages and environments – Myers et al

89

Synthetic programming elicitation: the
same but for LLMs

Prompt engineering:
trying to persuade the
LLM to do what you want

Our approach: observe what
the LLM does, and design a
DSL for the LLM.

Synthetic programming elicitation: the
same but for LLMs

Synthetic programming elicitation and repair

If we can’t fix the errors,
give the LLM guidance to
get it back to the DSL

If the LLM goes wrong,
and we can fix it with
force, we do.

Design a DSL for
the LLM

Parse response
generously

Repair via SMT
solver Repair via LLM

Overview

DSL

Design a DSL for
the LLM

Parse response
generously

Repair via SMT
solver Repair via LLM

Overview

DSL

94

• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL

95

• Participant: gpt-4-0613

• Data:

• 82 UCLID5 regression tests

• Each test consists of:

• A description string

• UCLID5 code

• Tasks (for each test):

• Ask the LLM to write Python code that implements the test description

Choosing the DSL

96

• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL

97

Choosing the DSL

Example task:
You are an expert user of FormalVerificationLibrary, a Python
API for the formal modeling and verification of transition
systems and procedures. Please write Python code using the
FormalVerificationLibrary API that fits the description below.
Do not worry if you do not remember the names of particular
functions or classes.

The module has two integer variables and two bitvector
variables. It should use inline assertions in the init block to
check that we can correctly divide two integers, and correctly
divide two bitvectors. It should check that signed and unsigned
division report different results for very big bitvectors.

Generic

Prompt

Task

Specific

98

• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL

99

Choosing the DSL

Example respose:

100

Choosing the DSL

Another example task:

101

Choosing the DSL

Another example response

102

• Analyse responses and choose language accordingly

• Call LLM on all data

• Collate a set of “training” data

Synthetic programming elicitation:

Choosing the DSL

Very object oriented!

When common Python uses a feature, the LLM will use it

Otherwise, the LLM will find a workaround using imports

None of the outputs were syntactically incorrect Python code (parsable)

103

Choosing the DSL

Very object oriented!

When common Python uses a feature, the LLM will use it

Otherwise, the LLM will find a workaround using imports

None of the outputs were syntactically incorrect Python code (parsable)

104

Choosing the DSL

Note that there was no
DSL for UCLID5 in Python
like this before.

The DSL
- is a strict subset of Python
- every string in the DSL can be translated to syntactically correct UCLID5
code

105

Choosing the DSL

106

• We can now use minimal prompting to interface to the LLM

Write python code to complete the
following task:

[TASK]

Reply with your code inside one
unique code block.

[Describe FormalVerificationLibrary]

I can definitely do that.
Here’s the code:

[…]

Choosing the DSL

Design a DSL for
the LLM

Parse response
generously

Repair via SMT
solver Repair via LLM

Overview

DSL

108

Finding the largest subtree

• Given a response, parse it using a parser for Python

Python
Parser

LLM
output

Python AST

109

Finding the largest subtree

• Given a response, parse it generously using an error-tolerant parser for Python

Python
Parser

LLM
output

Python AST

?

Any error nodes are
marked and replaced with
holes

110

Finding the largest subtree

• Given a response, parse it generously using an error-tolerant parser for Python

Python
Parser

LLM
output

Python AST

?

Recursive
descent
pruning

• prune anything not in the DSL

??

111

Finding the largest subtree

• Given a response, parse it generously using an error-tolerant parser for Python

Python
Parser

LLM
output

Python AST

?

Recursive
descent
pruning

• prune simple things not in the DSL

??

static
checks

with Max-
SMT solver

??

?

DSL AST

• use a Max-SMT solver to find other syntax violations

Finding the largest subtree

Max-SMT encoding, inspired by [9]:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL

• Find the maximum set of satisfiable clauses, and replace all other nodes with holes

[9] Finding Minimum Type Error Sources - Pavlinovic et al

Finding the largest subtree

Max-SMT encoding:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL

• Find the maximum set of satisfiable clauses, and replace all other nodes with holes

var x: bv32

x:=0;

• x is a bitvector

• 0 is an integer

• x is an integer

Finding the largest subtree

Max-SMT encoding:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL

• Find the maximum set of satisfiable clauses, and replace all other nodes with holes

• x is a bitvector

• 0 is an integer

• x is an integer

var x: bv32

x:=0;

Finding the largest subtree

Max-SMT encoding:

• For every static check in the DSL, for every node of the AST, generate a clause

• If all clauses are satisfied, the AST is in the DSL

• Find the maximum set of satisfiable clauses, and replace all other nodes with holes

• x is a ??

• 0 is an integer

• x is an integer

var x: ??

x:=0;

Design a DSL for
the LLM

Parse response
generously

Repair via SMT
solver Repair via LLM

Overview

DSL

117

Model-driven repair

Once we have a set of satisfiable clauses, we can use the satisfying model to
repair (some of) the program:

• x is a ??

• 0 is an integer

• x is an integer

var x: ??

x:=0;

118

Model-driven repair

Once we have a set of satisfiable clauses, we can use the satisfying model to
repair (some of) the program:

• x is a ??

• 0 is an integer

• x is an integer

SAT when ?? is “integer”
If multiple assignments are
valid, we use the one the
SMT solver suggests.

var x: ??

x:=0;

Design a DSL for
the LLM

Parse response
generously

Repair via SMT
solver Repair via LLM

Overview

DSL

120

LLM-driven repair

Not everything can be repaired by the Max-SMT solver

121

LLM-driven repair

If we can’t repair the program from the model, we ask the LLM to repair the
holes:

Fix the following Python code by
replacing every occurrence of “??”
with the correct code.

[CODE WITH HOLES]

Make sure your code completes the
following lines […]

Design a DSL for
the LLM

Parse response
generously

Repair via SMT
solver Repair via LLM

Loop repeats up to 5
times.

Overview

DSL

Eudoxus: ghost writing UCLID5

124

Results

0

25

50

75

100

GPT4

GPT3
.5

Fin
e-t

un
ed

 3.
5

Eud
oxu

s (
GPT4)

Eud
oxu

s (
GPT3.5

)

%

Did not parse
wrong
mostly wrong
half correct
mostly correct
totally correct

All results are pass@1
Fine-tuning is done using
all public UCLID5
regression tests.

125

Conclusion (part II)

0
25
50
75

100
125

When syntactic correctness is an issue, don’t prompt
or fine-tune to force the LLM to learn the rules you
want it to.

Instead, use PL and formal techniques to meet the
LLM in the middle

126

Related work

Giving the LLM feedback via compiler errors [10]

● Needs good compiler errors

● Not very effective for Dafny anyway[11]

Constrained Decoding [12]

● Limited to checks that you can encode in a grammar

●Works well if the LLM is *reasonably close* to the grammar you want?

[10] Fixing Rust Compilation Errors using LLMs - Deligiannis et al
[11] DafnyBench: A Benchmark for Formal Software Verification – Loughridge et al
[12] Efficient Guided Generation for Large Language Models – Willard and Louf

Not dead yet!

Conclusions

128

Conclusions

• Semantic and Syntactic correctness are still challenges for LLMs

• especially in low resource languages and problem domains

• Formal methods and enumerative techniques might just be the answer to this!

129

Conclusions

• Semantic and Syntactic correctness are still challenges for LLMs

• especially in low resource languages and problem domains

• Formal methods and enumerative techniques might just be the answer to this!

contact fmora@Berkeley.edu

Eudoxus @CAV:

talk@CAV, Saturday 27th 4pm
contact Yixuan.Li.cs@ed.ac.uk

Guiding enumerative synthesis
@CAV:

mailto:fmora@Berkeley.edu
mailto:Yixuan.Li.cs@ed.ac.uk

