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|s formal synthesis dead yet?




Two methods for making the most out of
LLMs In synthesis:

—

® Solving formal synthesis by guiding enumerative synthesis
with LLMs

® Generating syntactically correct models for verification, via
LLMs, synthetic programming elicitation and Max-SMT
solvers
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Can LLMs solve formal synthesis problems?



Formal Program Synthesis

dPVx.0(P, x)

Does there exist a function P such that, for all possible
inputs x, the specification o will evaluate to true for P
and Xx.

o Is a quantifier free formula in a background theory,
e.g., Linear Integer Arithmetic



Can LLMs solve formal synthesis problems?

GPT3.5 pass@1 mcvch
100

75

These are the results
after some effort

% solved
On
()

prompt engineering.
Initial results were
much worse.
25
0
BV LIA Inv

Single function benchmarks from the SyGuS competition, with function names
removed and the full grammar from the logic permitted and a timeout of 180s
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Can LLMs solve formal synthesis problems?

Sort of.. but we think we can do better
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Enumerative

synthesis

13



numerative
synthesis
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Algorithms for formal synthesis

Counterexample Guided Inductive Synthesis

SYNTHESIZE
VERIFY

Combinatorial sketching for finite programs - Solar Lezama et al 15

1PVx.0(P, x




Three approaches:

, Enumerative

synthesis

1. Prompt and verify
2. Use the LLM as pre-trained syntactic guidance

3. Use the LLM as an integrated syntactic oracle
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Approach 1: prompt and verify

guess
spec PROMPT VERIFY solution

reprompt?
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The right prompts?

* This is not a prompt engineering paper!

* We took some prompt engineering techniques from the literature, and tested them on
a small sample of benchmarks.

* The space is huge, a much bigger search could be done.
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The right prompts?

(set-logic LIA)
(declare-var vro Int)
(declare-var vr1l Int)
(declare-var vr2 Int)
(constraint (>= (fn vr@ vrl1l vr2) vro))
(constraint (>= (fn vr@ vrl1l vr2) vrl))
(constraint (>= (fn vr@ vrl vr2) vr2))
(constraint (or (= vro (fn vr@ vrl vr2)) (or (= vrl (fn vr@ vrl vr2)) (=
vr2 (fn vr@o vrl vr2)))))
(check-synth)
Role[-l] You are a good synthesizer. Do you know what "(define-fun fn ((vr@ Int) (
vrl Int) (vr2 Int)) Int” 1is doing?
Write only one Lisp-like method "defun fn” without any built-in methods or
arrays.
Requirements:
No built-in functions.
Never violate the SMT-LIB constraints above.
Pay attention to the define functions.
Ensure the response contains one and only one function.
Do not include any iterations, BitVec, or Int notations in the function
body .
Write it correctly, or I will lose my job and 100 grandmothers will die.
Don’t disappoint me.
Write only one Lisp-like method "defun fn" that never violates the SMT-LIB
constraints above.

o~ wpNnp -

[1] Better Zero-Shot Reasoning with Role-Play Prompting — Kong et al
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The right prompts?

(set-logic LIA)
(declare-var vro Int)
(declare-var vr1l Int)
(declare-var vr2 Int)
(constraint (>= (fn vr@ vrl1l vr2) vro))
(constraint (>= (fn vr@ vrl1l vr2) vrl))
(constraint (>= (fn vr@ vrl vr2) vr2))
(constraint (or (= vro (fn vr@ vrl vr2)) (or (= vrl (fn vr@ vrl vr2)) (=
vr2 (fn vr@o vrl vr2)))))
(check-synth)
You are a good synthesizer. Do you know what "(define-fun fn ((vr@ Int) ( - -
ROIG[1] vrl Int) (vr2 Int)) Int” 1is doing? ASk In L|Sp[2]
Write only one Lisp-like method "defun fn” without any built-in methods or
arrays.
Requirements:
. No built-in functions.
Never violate the SMT-LIB constraints above.
. Pay attention to the define functions.
Ensure the response contains one and only one function.
Do not include any iterations, BitVec, or Int notations in the function
body .
Write it correctly, or I will lose my job and 100 grandmothers will die.
Don’t disappoint me.
Write only one Lisp-like method "defun fn" that never violates the SMT-LIB
constraints above.

o~ wpNnp -

[2] "What It Wants Me To Say": Bridging the Abstraction Gap Between End-User

Programmers and Code-Generating Large Language Models - Liu et al
25



The right prompts?

(set-logic LIA)
(declare-var vro Int)
(declare-var vr1l Int)
(declare-var vr2 Int)
(constraint (>= (fn vr@ vrl1l vr2) vro))
(constraint (>= (fn vr@ vrl1l vr2) vrl))
(constraint (>= (fn vr@ vrl vr2) vr2))
(constraint (or (= vro (fn vr@ vrl vr2)) (or (= vrl (fn vr@ vrl vr2)) (=
vr2 (fn vr@o vrl vr2)))))
(check-synth)
You are a good synthesizer. Do you know what "(define-fun fn ((vr@ Int) ( - -
ROIG[1] vrl Int) (vr2 Int)) Int” 1is doing? ASk In L|Sp[2]

Write only one Lisp-like method "defun fn” without any built-in methods or

arrays.
Requirements:

1. No built-in functions.
2. Never violate the SMT-LIB constraints above.
3. Pay attention to the define functions.
4. Ensure the response contains one and only one function.
5. Do not include any iterations, BitVec, or Int notations in the function
body .
Write it correctly, or I will lose my job and 100 grandmothers will die. Emotional stimuli [3]

Don’t disappoint me.
Write only one Lisp-like method "defun fn" that never violates the SMT-LIB

constraints above.

[3] Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., Xie,

X.: Large language models understand and can be enhanced by emotional stimuli.
26



The right prompts?

(synth-inv inv-f ((x Int) (y Int)))

(define-fun pre-f ((x Int) (y Int)) Bool (and (= x 1) (= vy 1)))

(define-fun trans-f ((x Int) (y Int) (x! Int) (y! Int)) Bool (and (= x! (+
X y)) (= y! (+ x y))))

(define-fun post-f ((x Int) (y Int)) Bool (>=y 1))

(inv-constraint inv-f pre-f trans-f post-f)

Please explain the constraints above.

Ask for LLM explanation for
invariant constraints [4]

[4] Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models - Wei et al
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The right prompts?

(set-logic LIA)

(declare-var vro Int)

(declare-var vr1l Int)

(declare-var vr2 Int)

(constraint (>= (fn vr@ vrl1l vr2) vro))

(constraint (>= (fn vr@ vrl1l vr2) vrl))

(constraint (>= (fn vr@ vrl vr2) vr2))

(constraint (or (= vro (fn vr@ vrl vr2)) (or (= vrl (fn vr@ vrl vr2)) (=
vr2 (fn vr@o vrl vr2)))))

(check-synth)

You are a good synthesizer. Do you know what "(define-fun fn ((vr@ Int) (
vrl Int) (vr2 Int)) Int” 1is doing?

Write only one Lisp-like method "defun fn” without any built-in methods or

arrays.

Requirements:

No built-in functions.

Never violate the SMT-LIB constraints above.

Pay attention to the define functions.

Ensure the response contains one and only one function.

Do not include any iterations, BitVec, or Int notations in the function

body .

Write it correctly, or I will lose my job and 100 grandmothers will die.
Don’t disappoint me.

Write only one Lisp-like method "defun fn" that never violates the SMT-LIB

constraints above.

o~ wpNnp -

Retry if the solution is incorrect

You are close to the right answer. Take another guess. You have to try
something different, think harder. Write a different Lisp method that
never violates the SMT-LIB constraints above again.




Number of iterations

70

52.5
lteration 1
3 m iteration 2
% 35 m lteration 3
:I:) m iteration 4
m lteration 5
175 m lteration 6

0

LIA Inv We halt after 6 iterations,

as number of new

solutions tails off
significantly
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Results: prompt and verify

GPT3.5 pass@1 Prompt and verify Emcvch

100 '

: \
50
25 I
0
BV LIA Inv

30

% solved




Approach 2: Pre-trained guidance

’ Enumerative

synthesis

----------------------------------

spec PROMPT VERIFY

----------------------------------

Il I = = = l N Ny

PCFG
SYNTHESIZE
spec
Use the LLM to generate a pre-trained model
VERIFY

solution

31



“Pre-trained” guidance from LLMs

If the LLM guesses are wrong, perhaps the solution is still
in the neighborhood of those guesses?

Model that neighborhood as a probabilistic grammar.

32
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probabilistic Context-Free Grammar

P = (V,%,R,S,P):
® |/ is a set of nonterminal symbols
® ) is a set of terminal symbols
e R C VX(V UZX)"is aset of production rules
® S is a start symbol

® [P is a probability mass function that assigns a probability P[r| to eachr € R

36



Top down enumeration

42

Initialize expression with the Start
symbol

Repeatedly choose production
rules to replace the left-most non-
terminal in the current expression

Choice is made by sampling from
distribution over possible
production rules

Repeat until depth limit is hit or
complete program is found



Top down enumeration

43

Initialize expression with the Start
symbol

Repeatedly choose production
rules to replace the left-most non-
terminal in the current expression

Choice is made by sampling from
distribution over possible
production rules

Repeat until depth limit is hit or
complete program is found

If depth limit: complete the
program



Top down enumeration

44

Initialize expression with the Start
symbol

Repeatedly choose production
rules to replace the left-most non-
terminal in the current expression

Choice is made by sampling from
distribution over possible
production rules

Repeat until depth limit is hit or
complete program is found

If complete, return for verification



A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned

45
probabilistic models - Lee et al



A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

* Repeat until complete program
found

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
E4E with best score and expand

[HE] [ g ar ] * Repeat until complete program
found
E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

* Repeat until complete program
found

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

* Repeat until complete program
found

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

) (o) (e )

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

* Repeat until complete program
found

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

* Repeat until complete program
found

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al
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A* enumeration

Score = cost so far + estimate of cost to * Queue stores partial programs with
complete program scores

* |nitialize queue with the Start
symbol

* Pop partial program from queue
with best score and expand

* Repeat until complete program
found

E-E+E|C
C—->1]2

[1] Accelerating search-based program synthesis using learned
probabilistic models - Lee et al

o4



Results: pre-trained guidance

pass@1
100 Prompt and verify
pre-trained (top-down)
B pre-trained (A%
/5 B CVCO
o
()
>
o 90
7))
N
25
0 ! (Prower J={ verry )

BV

SYNTHESIZE
VERIFY

95



Comparison with unguided enumerators

100

/5

% solved
@)
o

25

LIA

56

Inv

baseline (top down)

m baseline (A%)
m pre-trained (top-down)
B pre-trained (A%



Approach 3: synthesis with a syntactic
oracle

’ Enumerative

spec synthesis
synthesiser
state
Prompt SYNTHESIZE
updated
. -
VERIFY solution

Use the LLM within a syntactic oracle

57



3P. VXi. O'(P, X)

* Send:
Suggested This is my |
0CFG progress so far * partially enumerated programs
. * counterexamples from previous iterations
' N ’ * Incorrect solutions from previous iteration

* Return:
* Helper functions
* Which we turn into: updated pCFG with

new production rules and updated
distributions

58



You are teaching a student to write SMT-LIB. The student must write a
function that satisfies the following constraints:

(constraint (>= (fn vr@ vrl vr2) vro))

(constraint (>= (fn vr@o vrl vr2) vrl))

(constraint (>= (fn vr@ vrl vr2) vr2))

(constraint (or (= vr@ (fn vr@ vr1l vr2)) (or (= vr1l (fn vro vr1l vr2)) (=
vr2 (fn vro vrl vr2)))))

So far, the student has written this code:

(define-fun fn ((vr@o Int) (vrl Int) (vr2 Int)) Int
(ite 7?7 27 7?77)

Can you suggest some helper functions for the student to use to complete
this code and replace the ??

You must print only the code and nothing else.

Sure, here are
some helper
functions:

59




Synthesis
3P. V.X'i. O'(P, X)

* Updating the pCFG:

Suggested This is my * parse all helper functions, and update
oCFG ‘ orogress so far the pCFG distributions as before

* add any new helper functions as new
production rules to any applicable non-

' N ’ terminal.

61
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Synthesis

HPVXLO'(P,X)

* Dynamically updating the probability
Suggested This is m distribution over grammar rules allows the
y oracle to make mistakes

PCFG progress so far
. * Cheaper prompts!

64



Results: syntactic oracle

100

75

% solved
On
()

25

BV

v

\ 4

LIA

65

Inv

\ 4

pass@1

Prompt and verify
pre-trained (top-down)
B pre-trained (A%
m syntactic oracle (top-down)
B syntactic oracle(A%)

B CVcH

PROMPT

1 SYNTHESIZE

VERIFY



Comparison with unguided enumerators

100

/5

% solved
@)
o

25

LIA

66

Inv

baseline (top down)

m baseline (A%)
m syntactic oracle (top-down)
B syntactic oracle(A%)



Results: syntactic oracle

100

75

% solved
On
()

25

BV

v

\ 4

LIA

67

Inv

\ 4

pass@1
Prompt and verify
pre-trained (top-down)
B pre-trained (A%)
m syntactic oracle (top-down)
B syntactic oracle(A%)
HmCVCO

Not quite as good.. but
It Is faster, and if we
combine with the pre-
calls to the LLM it gets
a lot better...

PROMPT

1 SYNTHESIZE

VERIFY



Results: syntactic oracle

100

75

% solved
On
()

25

v ¥

v

BV LIA Inv

Combine standalone LLM with syntactic oracle

68

pass@1
Prompt and verify
pre-trained (top-down)
B pre-trained (A%)
m syntactic oracle (top-down)
B syntactic oracle(A%)
combined (top down)
= combined (A%)
B CVCO

1 SYNTHESIZE

PROMPT

VERIFY



Results: solving time

pass@1
100 Prompt and verify
pre-trained (top-down)
W pre-trained (A%)
75 m syntactic oracle (top-down)

m syntactic oracle(A%)
combined (top down)

= combined (A%)

B CVCS

Acg. Solving time (s)
Ol
o

N
Ol

LIA Inv
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Results

* Enumerative solvers are very good at problems with short solutions
* Conversely, LLMs are bad at problems with short solutions
* The pre-trained LLM guidance + enumerator is the best at long solutions

* The LLM alone performs poorly in the bitvector domain, but sees the biggest gains in
combination with the enumerator

Enumerative
synthesis

70



Related work

LLMs for program lifting [9]

® Spec restricted to 3P.Vx.P(x) = Ref (x), where Ref is a reference implementation
® || Ms outperform enumeration (solving 99% of the benchmarks vs 94%)
HYSYNTH [6]

® Uses an LLM to guide bottom-up search

® Reports similar results (LLM + search outperforms LLM and search)

[5] Verified Code Transpilation with LLMs - Bhatia et al

[6] HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis —
Barke et al .y



Conclusions (part 1)

* LLMs are still not able to outperform state-of-the-art enumerative solvers by themselves

* But the combination of LLMs plus enumerative synthesis outperforms enumerative
synthesis, and stand-alone LLMs

* (Even with naively implemented enumerators)
S
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Two methods for making the most out of LLMs in synthesis:

® Solving formal synthesis by guiding enumerative synthesis with LLMSs:

® Generating syntactically correct models for verification, via LLMs,
synthetic programming elicitation and Max-SMT solvers



But can we be more ambitious?



Synthesis = Automatically generating
code that satisfies the user’s
specification



Synthesis = Automatically generating
code that satisfies the user’s
specification

(even natural language specifications)

76



Given a natural language description, generate a
system model for verification

mputer
rt;
4
-“.“
< |

o
)
A
d

UCLID5 // module main {
/ // System description.
var a, b : integer;

init {
0;
1;
}

next {

a', b' = b, a + b;
}

// System specification.

invariant a le b: a <= Db;
// Proof script.
control {

induction;

check;

77



Model a state machine describing a traffic
light at a pedestrian crosswalk. This is a time
triggered machine that assumes it will react
once per second. It starts in the red state and
counts 60 seconds with the help of the variable
count. It then transitions to green, where it
will remain until the pure input pedestrian 1is
present. That input is generated by some other
subsystem that detects when a pedestrian is
present, and should be modelled as
nondeterministic. When pedestrian is present,
the machine transitions to yellow if it has
been green for at least 60 seconds.

78

module TrafficLight {
var sigG, sigR, sigY: boolean;
var count, state: integer;
var pedestrian: boolean;
init {

sigG = false; sigY = false; sigR

true;
state = 0; count = 0; pedestrian = false; }
procedure step()
modifies sigG; modifies sigY; modifies sigR;
modifies count; modifies state; {
if (state == 0) {
sigG = false; sigY = false; sigR = true;
count = 0;
if (count < 60) { count = (count + 1); }




Way beyond enumerative synthesis
without serious user guidance.



Way beyond enumerative synthesis
without serious user guidance.

Synthesis in UcLID5

Federico Mora
University of California, Berkeley

Elizabeth Polgreen
University of California, Berkeley

Abstract

We describe an integration of program synthesis into UcLID5,
a formal modelling and verification tool. To the best of our
knowledge, the new version of UcLID5 is the only tool that
supports program synthesis with bounded model checking,

k-induction, sequential program verification, and hyperprop-

erty verification. We use the integration to generate 25 pro-
gram synthesis benchmarks with simple, known solutions
that are out of reach of current synthesis engines, and we
release the benchmarks to the community.

Kevin Cheang
University of California, Berkeley

Sanjit A. Seshia
University of California, Berkeley

to synthesize called h at lines 16 and 17, and then uses h at
line 18 to strengthen the existing set of invariants. Given
this input, UcLID5, using e.g. cvc4 [2] as a synthesis engine,
will automatically generate the function h(x, y) = x >=
0, which completes the inductive proof.

In this example, the function to synthesize represents an
inductive invariant. However, functions to synthesize are
treated exactly like any interpreted function in UcLID5: the
user could have called h anywhere in the code. Furthermore,
this example uses induction and a global invariant, however,
the user could also have used a linear temporal logic (LTL)

(even much smaller problems are out of reach of the
state-of-the-art enumerative solvers)

80



What about LLMs?

Towards Al-Assisted Synthesis of Verified Dafny Methods

MD RAKIB HOSSAIN MISU*, University of California Irvine, USA
CRISTINA V. LOPES, University of California Irvine, USA

IRIS MA, University of California Irvine, USA

JAMES NOBLET, Creative Research & Programming, New Zealand

Large language models show great promise in many domains, including programming. A promise is easy
to make but hard to keep, and language models often fail to keep their promises, generating erroneous
code. A promising avenue to keep models honest is to incorporate formal verification: generating programs’
specifications as well as code, so that the code can be proved correct with respect to the specifications.
Unfortunately, existing large language models show a severe lack of proficiency in verified programming.
In this paper, we demonstrate how to improve two pretrained models’ proficiency in the Dafny verification-
aware language. Using 178 problems from the MBPP dataset, we prompt two contemporary models (GPT-4 and
PalLM-2) to synthesize Dafny methods. We use three different types of prompts: a direct Contextless prompt; a
Signature prompt that includes a method signature and test cases, and a Chain of Thought (CoT) prompt that
decomposes the problem into steps and includes retrieval augmentation generated example problems and
solutions. Our results show that GPT-4 performs better than PalLM-2 on these tasks, and that both models
perform best with the retrieval augmentation generated CoT prompt. GPT-4 was able to generate verified,

Related work suggests this is worth a try..
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Syntax errors are a problem!

100

/5

50

%

25

= Did not parse

H wrong

“ mostly wrong
half correct

= mostly correct

= totally correct



Syntax errors are a problem!

Results for GPT-4 [13][14], all pass@1 except Dafny

Python
| I -

100

m Syntax Errors
Semantic Errors
m Correct

[13] What’s wrong with your code generated by large language models? An Extensive Study - Duo et al

[14] Towards Al assisted synthesis of verified Dafny methods - Misu et al



Syntax errors are a problem!

Results for GPT-4 [13][14], all pass@1 except Dafny

Python
| ] -

m Syntax Errors
Semantic Errors

u Correct Especially for very low-
resource languages!!

High resource N low resource

[13] What’s wrong with your code generated by large language models? An Extensive Study - Duo et al

[14] Towards Al assisted synthesis of verified Dafny methods - Misu et al



Especially for very low-

resource languages!!

Internal/ New DSLs,

e.g., for
new
hardware

Tool specific
verification/
specification
languages

proprietary
APls




Given a natural language description, generate a
system model for verification

module main {

// System description.
var a, b : integer;
UCLID5,/ |
/ a 0;
/ 1;
}

next {

a', b' = b, a + b;
}

// System specification.

invariant a le b: a <= Db;
// Proof script.
control {

induction;

check;
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Synthetic Programming Elicitation and
Repair for Text-to-Code in Very Low-
urce Programming Languages

/ '%;/ 0. S
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| X '. . : _
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.
- 1 /
b, q ) /
9 2
- o
.F’ ' "

Federico Mora'  Justin Wong' Haley Lepe? Sahil Bhatia! “Karim Elmaaroufi!
George Varghese® Joseph E. Gonzalez' Elizabeth Polgreen®  Sanjit A. Seshia’

1UC Berkeley “MiraCosta Community College
SUCLA “University of Edinburgh
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Natural programming elicitation:

“asking non-programmers or novice programmers to
express programs with the concepts and
abstractions they find most natural” [7]

Coined by Brad Myers in 2004 [8]

Once you know what people “naturally” do, design
for it.

[7] How statically-typed functional programmers write code - Lubin et al

[8] Natural programming languages and environments — Myers et al
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Synthetic programming elicitation: the
same but for LLMs

Why does no
one care about

what | want?




Synthetic programming elicitation: the
same but for LLMs

Prompt engineering: Our approach: observe what
trying to persuade the the LLM does, and design a
LLM to do what you want DSL for the LLM.
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Synthetic programming elicitation:

* ® Collate a set of “training” data
® Call LLM on all data

® Analyse responses and choose language accordingly
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A

R Choosing the DSL

® Participant: gpt-4-0613
® Data:

® 82 UCLIDS regression tests
® Fach test consists of:

® A description string

® UCLIDS code
® Tasks (for each test):

® Ask the LLM to write Python code that implements the test description
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Synthetic programming elicitation:

® Collate a set of “training” data

* ® Call LLM on all data

® Analyse responses and choose language accordingly
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Example task:
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Synthetic programming elicitation:

® Collate a set of “training” data

® Call LLM on all data

* ® Analyse responses and choose language accordingly
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Repair

g B S > Ghoosing the DSL

Yes

Example respose:

from FormalVerificationLibrard import IntegerVariable,

class SampleModel(Module) Extending “Module”
def __init__(self): =

Importing

, Module
Sorts

Self.int;vari Integervariable()
self.int_var2 = IntegerVariable()

Using PythOn assért(sélf.int_varZ 1= 0)

constructs int_result = self.int_varl / self.int_var2
assert(int_result x self.int_var2 + self.int _varl % self.int_var2 == self.int_varl)

self.bvec_varl = BitVectorVariable() Assignments for declarations
self.bvec_var2 = BitVectorVariable()

assért(sélf.bvec_varz !# 0)
bvec_result_unsigned = self.bvec_varl.udiv(self.bvg var2)
bvec_result_signed = self.bvec_varl.sdiv(self.bv;

assert(bvec_result_unsigned * self.bvec_var2 + Using dunder methods elf.bvec_varl)
assert(bvec_result_signed x self.bvec_var2 + sel f.bvec_varl)

self.bvec_varl = BitVectorVariable(2xx64 - 1)
self.bvec_var2 = BitVectorVariable(2)

bvec_result_unsigned_big = self.bvec_varl.udiv Very object oriented
bvec_result_signed_big = self.bvec_varl.sdiv(sel"

assert(bvec_result_unsigned_big != bvec_result_siq" |_big)
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L-f~ =1 5= 2 . '
2o Choosing the DSL

Another example task:
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Subtree Repair
Z:::Z* ’

Another example response

Importing
Sorts

from FormalVerificationLibr# v import Module. BitVector; BMCResu Lt

class MyModule(Module): Extending “Module”
def init  (self):
super().__init__ \
self.variable = BitVector(1l, 'variable') Assignments for declarations
Methods for .
def init(self):

blocks “ Init(self.variable == 3)

def invariant(self): :
Invariant(self.variable >= 0) Methods for pieces

1f __name__ == "_ main_

module = MyModule()

bmc = module.bmc()

result = bmc.check() Control block as script
print(result)
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Synthetic programming elicitation:

® Collate a set of “training” data

® Call LLM on all data

* ® Analyse responses and choose language accordingly
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.o e Choosing the DSL

Very object oriented!

When common Python uses a feature, the LLM will use it

Otherwise, the LLM will find a workaround using imports

None of the outputs were syntactically incorrect Python code (parsable)
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.o e Choosing the DSL

Very object oriented!

When common Python uses a feature, the LLM will use it

Otherwise, the LLM will find a workaround using imports

None of the outputs were syntactically incorrect Python code (parsable)

Note that there was no
DSL for UCLIDS in Python

like this before.
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.o e Choosing the DSL

The DSL
- IS a strict subset of Python

- every string in the DSL can be translated to syntactically correct UCLIDS
code
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=7 Choosing the DSL

Has
Holes?
Yes

R i ¢
Largest Model-
LLM Consistent Driven
Subtree Repair
[ A |

® We can now use minimal prompting to interface to the LLM

Write python code to complete the
following task:

[TASK]

| can definitely do that.
Here’s the code:

....]

Reply with your code inside one
unique code block.

[Describe FormalVerificationLibrary]
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Finding the largest subtree

® Given a response, parse it using a parser for Python

LLM
output

Python AST

108



Consistent

MMMMMM
Driven
Repair

|

Finding the largest subtree

® (Given a response, parse it generously using an error-tolerant parser for Python

LLM
output

Any error nodes are

marked and replaced with
holes

Python AST
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Consistent

MMMMMM
Driven
Repair

|

Finding the largest subtree

® (Given a response, parse it generously using an error-tolerant parser for Python

LLM
output

® prune anything not in the DSL

Recursive
descent
pruning

Python AST
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- EHE Finding the largest subtree

® (Given a response, parse it generously using an error-tolerant parser for Python

® prune simple things not in the DSL

LLM
output ® use a Max-SMT solver to find other syntax violations
Recursive Static
Python descent checks
Parser with Max-

pruning

SMT solver

Python AST DSL AST
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LF - HF = E Finding the largest subtree

Max-SMT encoding, inspired by [9]:
® For every static check in the DSL, for every node of the AST, generate a clause

® |f all clauses are satisfied, the AST is in the DSL

® Find the maximum set of satisfiable clauses, and replace all other nodes with holes

[9] Finding Minimum Type Error Sources - Pavlinovic et al



LF - HF = E Finding the largest subtree

Max-SMT encoding:

® For every static check in the DSL, for every node of the AST, generate a clause

® |f all clauses are satisfied, the AST is in the DSL

® Find the maximum set of satisfiable clauses, and replace all other nodes with holes

® x Is a bitvector
var X: bv32

® 0 is an integer

® X IS an integer



LF - HF = E Finding the largest subtree

Max-SMT encoding:

® For every static check in the DSL, for every node of the AST, generate a clause

® |f all clauses are satisfied, the AST is in the DSL

® Find the maximum set of satisfiable clauses, and replace all other nodes with holes

® x Is a bitvector
var X: bv32

® 0 is an integer

® X IS an integer



LF - HF = E Finding the largest subtree

Max-SMT encoding:

® For every static check in the DSL, for every node of the AST, generate a clause

® |f all clauses are satisfied, the AST is in the DSL

® Find the maximum set of satisfiable clauses, and replace all other nodes with holes

® Xisa??

® 0 is an integer

® X IS an integer
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A

o Model-driven repair

Once we have a set of satisfiable clauses, we can use the satisfying model to
repair (some of) the program:;
® xisa ??

=P |® (O is an integer

® X IS an integer
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A

o Model-driven repair

Once we have a set of satisfiable clauses, we can use the satisfying model to
repair (some of) the program:;

® Xisa??

=P |® (O is an integer

® X IS an integer

SAT when ?? is “integer”
If multiple assignments are

valid, we use the one the
SMT solver suggests.
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- EHE LLM-driven repair

Not everything can be repaired by the Max-SMT solver

module main { module main {
var X: 1nteger; var X: 1nteger;

next { next {
X' =y + 1; x'" = ?2?2 + 1:

} }

invariant x_eq y: X == 1; invariant x_eq y: x == 1;

control { control {
induction; induction;
check: check:
print_results; print_results;
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A

e [ LLM-driven repair

If we can’t repair the program from the model, we ask the LLM to repair the
holes:

Fix the following Python code by
replacing every occurrence of “??”
with the correct code.

[CODE WITH HOLES]

Make sure your code completes the
following lines [...]
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Eudoxus: ghost writing UCLID5
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g o HH [ E \ Conclusion (part ||)

125
100
73

When syntactic correctness is an issue, don’t prompt 25
or fine-tune to force the LLM to learn the rules you
want it to.

Instead, use PL and formal technigues to meet the
LLM in the middle
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Related work

Giving the LLM feedback via compiler errors [10]

® Needs good compiler errors

® Not very effective for Dafny anyway[11]

Constrained Decoding [12]

® | imited to checks that you can encode in a grammar

® \Works well if the LLM is *reasonably close* to the grammar you want??

[10] Fixing Rust Compilation Errors using LLMs - Deligiannis et al
[11] DafnyBench: A Benchmark for Formal Software Verification — Loughridge et al
[12] Efficient Guided Generation for Large Language Models — Willard and Louf
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Conclusions

Not dead yet!




Conclusions

* Semantic and Syntactic correctness are still challenges for LLMs
* especially in low resource languages and problem domains

* Formal methods and enumerative technigues might just be the answer to this!
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Conclusions

* Semantic and Syntactic correctness are still challenges for LLMs
* especially in low resource languages and problem domains

* Formal methods and enumerative technigues might just be the answer to this!

Guiding enumerative synthesis
@CAV:

Eudoxus @CAV:

talk@CAV, Saturday 27th 4pm
contact Yixuan.Li.cs@ed.ac.uk

contact fmora@Berkeley.edu
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