
Dr. Elizabeth Polgreen

1

2

3

SAT

 : Boolean
 : Boolean

A
B

 : true
 : false

A
B

 ∃A, B
A ∧ ¬B

SMT (program)
Synthesis

4

SMT

 : Integer
 : Integer

A
B

 : 10
 : -3

A
B

SAT

 : Boolean
 : Boolean

A
B

 : true
 : false

A
B

 ∃A, B
A > 0 ∧ B < 0

 ∃A, B
A ∧ ¬B

(program)
Synthesis

5

(program)
Synthesis

∃F ∀A, B
F(A, B) ≥ A ∧
F(A, B) ≥ B ∧
(F(A, B) = A ∨

F(A, B) = B)

 : integer
 : integer
 : integer integer
 integer

A
B
F ×
→

SMT

 ∃A, B
A > 0 ∧ B < 0

 : Integer
 : Integer

A
B

 : 10
 : -3

A
B

SAT

 ∃A, B
A ∧ ¬B

 : Boolean
 : Boolean

A
B

 : true
 : false

A
B

5

F: max(A,B)

The Success of Boolean
Satisfiability Solvers

Algorithmic
Improvements

6

Number of problems solved

Ti
m

e

2002

2004

2009

2011

7

Progress of SAT solvers in SAT competition

The Success of Boolean
Satisfiability Solvers

Algorithmic
Improvements Applications

8

9

The Success of Boolean
Satisfiability Solvers

Algorithmic
Improvements Applications

We all write code

But writing correct code is hard...

SAT solvers allow computers to check code for us.

10

We all write code

But writing correct code is hard...

SAT solvers allow computers to check code for us.

Synthesis could allow computers to repair code for us.

11

(program)
Synthesis

12

Algorithmic
Improvements Applications

(program)
Synthesis

13

Algorithmic
Improvements Applications

(program)
Synthesis

14

Synthesising Environment
Invariants for Modular Hardware

Verification - Zhang et al.

Counterexample-Guided Synthesis of
Perception Models and Control - Ghosh et al.

Counterexample-Guided Data
Augmentation - Dreossi et al.

SyGuS Techniques in the Core of
an SMT solver - Reynolds et al.

Synthesis

15

Algorithmic
Improvements Applications

• Define synthesis

• Describe how my research fits into this vision

• Details: CounterExample Guided Inductive Synthesis
modulo Theories

• Future

In this talk

16

What is synthesis?formal

^

• Synthesis that satisfies a specification .

• Can be framed as Oracle Guided Learning.

σ

Input-output
examples

constraints

17

What is synthesis?formal

^

• Synthesis that satisfies a specification .

• Can be framed as Oracle Guided Learning.

σ

LEARNER ORACLE

Input-output
examples

constraints

18

What is synthesis?formal

^

• Synthesis that satisfies a specification .

• Can be framed as Oracle Guided Learning.

σ

LEARNER ORACLE

Positive examples
Negative examples

Positive and Negative examples
19

What is synthesis?formal

^

Counterexamples

LEARNER ORACLE

CounterExample Guided Inductive Synthesis
(CEGIS)[1]

• Logical specification .

• Synthesizes expressions/loop-free programs

σ

20

[1] Sketching stencils, Solar-Lezama et al. PLDI 2007

What is synthesis?formal

^

CounterExample Guided Inductive Synthesis
(CEGIS)

• Logical specification .

• Synthesizes expressions/loop-free programs

σ

Counterexamples

SYNTHESIZE VERIFY

21

SYNTHESIZE

VERIFY

CEGIS

∃P∀x . σ(P, x)

22

SYNTHESIZE

SA
T

UNSAT

P*

VERIFY

CEGIS

23

SYNTHESIZE

SA
T

UNSAT
VERIFY

∃x . ¬σ(P*, x)

P*

CEGIS

24

SYNTHESIZE

SA
T

UNSAT
VERIFY

∃x . ¬σ(P*, x)

CounterExample

CEGIS

25

SA
T

VERIFY

CounterExample

∃P* . ∀xi . σ(P*, xi)

∃x . ¬σ(P*, x)

SYNTHESIZE

CEGIS

26

VERIFY

∃P* . ∀xi . σ(P*, xi)
UNSAT

SYNTHESIZE

SA
T

P*

CEGIS

27

Algorithmic
Improvements Applications

Synthesis

28

Algorithmic
Improvements Applications

Synthesis

29

CAV 2017

ASE 2017
Acta Inf. 2020

Synthesis of safe
Digital Controllers

for LTI systems

Algorithmic
Improvements Applications

Synthesis

30

CAV 2017

ASE 2017
Acta Inf. 2020

Synthesis of safe
Digital Controllers

for LTI systems

Verification of
Parametric Markov

Models

QEST 2016
QEST 2017

Algorithmic
Improvements Applications

Synthesis

31

Synthesis of safe
Digital Controllers

for LTI systems

CounterExample Guided
Neural Synthesis

arxiv

Verification of
Parametric Markov

Models

CAV 2017

ASE 2017
Acta Inf. 2020

QEST 2016
QEST 2017

Algorithmic
Improvements Applications

Synthesis

32

CounterExample Guided
Neural Synthesis

arxiv

Incremental SAT
solving in CEGIS

Thesis

Synthesis of safe
Digital Controllers

for LTI systems

Verification of
Parametric Markov

Models

CAV 2017

ASE 2017
Acta Inf. 2020

QEST 2016
QEST 2017

Algorithmic
Improvements Applications

Synthesis

33

CounterExample Guided
Neural Synthesis

arxiv

Incremental SAT
solving in CEGIS

Thesis

Efficient symbolic
synthesis encodings

Thesis

Synthesis of safe
Digital Controllers

for LTI systems

Verification of
Parametric Markov

Models

CAV 2017

ASE 2017
Acta Inf. 2020

QEST 2016
QEST 2017

Algorithmic
Improvements Applications

Synthesis

Incremental SAT
solving in CEGIS CEGIS(T)

CounterExample Guided
Neural Synthesis

Efficient symbolic
synthesis encodings

34arxiv Thesis

Thesis

CAV 2018

Synthesis of safe
Digital Controllers

for LTI systems

Verification of
Parametric Markov

Models

CAV 2017

ASE 2017
Acta Inf. 2020

QEST 2016
QEST 2017

CounterExample Guided Inductive
Synthesis Modulo Theories

Extends CEGIS framework to

• verify generalized candidate solutions and

• return more general counterexamples.

CEGIS(T) is able to synthesize programs containing
arbitrary constants that elude other solvers.

- Do not appear in the synthesis problem
- Not 0, 1 or FFFF

35

CAV 2018

VERIFY

∃P* . ∀xi . σ(P*, xi)
UNSAT

SYNTHESIZE

SA
T

P*

CEGIS

36

37

Is it a plant?

Does it have legs?

Can I eat it? errm..

Yes

No

38

Is it a plant?

Does it have legs?

Can I eat it? errm..

Yes

No

SYNTHESIZE VERIFY
39

40
SYNTHESIZE VERIFY

No

No

No

41
SYNTHESIZE VERIFY

No

No

42
SYNTHESIZE VERIFY

No

No

No

43
SYNTHESIZE VERIFY

int x = 5;

while (x < 1000)
 x++;

assert(5 < x && x < 1005)

Safety Invariant
init(x) ⟺ x = 0

trans(x, x′) ⟺ x′ = x + 1

inv(x) ∧ (x < 1000) ∧ trans(x, x′) ⟹ inv(x′)

init(x) ⟹ inv(x)

inv(x) ∧ ¬(x < 1000) ⟹ (x < 1005) ∧ (x > 5)

find inv(x) such that:

44

INIT

BAD

Safety Invariant

45

inv(x) = (4 < x) ∧ (x < 1003)

int x = 5;

while (x < 1000)
 x++;

assert(5 < x && x < 1005)

init(x) ⟺ x = 0
trans(x, x′) ⟺ x′ = x + 1

Safety Invariant

46

Synthesis Encoding

SYNTHESIZE

VERIFY

∃P* . ∀xi . σ(P*, xi)
Increase

program size

47

∃P* . ∀xi . σ(P*, xi)

P1 ::= arg1 |arg2 |C0

C0 ::= 0000 |0001 | . . . |1111

Synthesis Encoding

48

C0 ::= 0000 |0001 | . . . |1111

∃P* . ∀xi . σ(P*, xi)

P1 ::= arg1 |arg2 |C0

T

Synthesis Encoding

49

P1 = arg1

∃P* . ∀xi . σ(P*, xi)

T

Synthesis Encoding

50

F

C0 ::= 0000 |0001 | . . . |1111

P1 ::= arg1 |arg2 |C0

P1 = arg2

C0 ::= 0000 |0001 | . . . |1111

∃P* . ∀xi . σ(P*, xi)

TF F F

F F

Synthesis Encoding

51

P1 ::= arg1 |arg2 |C0

P1 = 1

∃P* . ∀xi . σ(P*, xi)

P1 ::= arg1 |arg2 |C0

C0 ::= 0000 |0001 | . . . |1111

P2 ::= P1 + P1 |arg1 |arg2 |C1

P3 ::= P2 + P1 |P2 − P1 | . . .

C1 ::= 0000 |0001 | . . . |1111

Synthesis Encoding

52

∃P* . ∀xi . σ(P*, xi)

T

T T T T

T

F F F

P3 = 15 + arg1

Synthesis Encoding

53

P1 ::= arg1 |arg2 |C0

C0 ::= 0000 |0001 | . . . |1111

P2 ::= P1 + P1 |arg1 |arg2 |C1

P3 ::= P2 + P1 |P2 − P1 | . . .

C1 ::= 0000 |0001 | . . . |1111

inv(x) = (4 < x) ∧ (x > 1003)

int x = 5;

while (x < 1000)
 x++;

assert(5 < x && x < 1005)

init(x) ⟺ x = 0
trans(x, x′) ⟺ x′ = x + 1

Safety Invariant

54

SYNTHESIZE

VERIFY

x = 95inv(x) = (x < 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

inv(x) = (x < 96) x = 96
inv(x) = (x < 97)

And so on ..
55

No
No

No

SYNTH VERIFY

Yes
Is it a plant?

Does it
have legs?

Yes

Can I eat
it?

err

SYNTH VERIFY

56

Can we ask more general
questions?

57

SYNTHESIZE VERIFY
58

No, it’s not a plant

59
SYNTHESIZE VERIFY

No, it has
< 4 legs

No, it’s not a plant

60
SYNTHESIZE VERIFY

No, it has
< 8 legs

No, it’s not a plant

No, it has
< 4 legs

61
SYNTHESIZE VERIFY

Can we give more general
answers?

62

More general questions

More general answers

CEGIS(T)

63

PROPOSITIONAL
SAT SOLVER

ADD CLAUSESDEDUCTION

DPLL

Theory Solver

DPLL(T)

64

SYNTHESIZE

VERIFY

CEGISCEGIS(T)

65

SYNTHESIZE

VERIFY

CEGIS

DEDUCTION Generalize
candidate

first order solver

CEGIS(T)

66

SYNTHESIZE

VERIFY

CEGIS

DEDUCTION Generalize
candidate

SA
T

UNSAT

Counter
Example

first order solver

CEGIS(T)

67

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

P*

first order solver
68

P*

P*[v]

Generalize

Candidate

Generalized candidate

(x < 95)

(x < v)

69

SYNTHESIZE

VERIFY

CEGIS

DEDUCTION Generalize
candidate

P*[v]

first order solver

CEGIS(T)

70

Deduction

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

is there a value for v that makes (x < v) a valid invariant

71

SYNTHESIZE

VERIFY

CEGIS

DEDUCTION Generalize
candidate

¬P*[v]

first order solver

CEGIS(T)

72

CEGIS(T) - SMT

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

73

First Order Solver

Solves first order formula with:

• Arbitrary propositional structure

• 1 quantifier alternation

Paper presents 2 versions:

• SMT (Z3) [1]

• Fourier Motzkin

74

[1] Z3: An Efficient SMT Solver. De Moura et al. TACAS 2008

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

CEGIS(T) - SMT

75

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

CEGIS(T) - SMT

76

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

77

∃v∀x . σ(P*[v], x) ∧ (v < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

78

UNSAT UNSAT

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

79

UNSAT

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

80

UNSAT

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

81

SAT

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

82

SAT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

83

TIMEOUT TIMEOUT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

84

Experiments
Benchmarks:

• Bitvectors

• Syntax-guided Synthesis competition

(without the syntax)

• Loop invariants

• Danger invariants

Solvers:

• CVC4 [1]

• EUSolver, E3Solver, LoopInvGen –

bitvectors with no grammar unsupported

85

[1] CVC4. Barrett et al. CAV 2011

0

10

20

30

40

TIME (s)

<1s [1,10] [10,100] [100,3600] T/O

10
5

1012

22 24

46
11

38

Counterexample Guided Inductive
Synthesis Modulo Theories

Alessandro Abate1, Cristina David2,3(B) , Pascal Kesseli3,
Daniel Kroening1,3 , and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

cd652@cam.ac.uk
3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T)
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the

Supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN 712689
SC2. Cristina David is supported by the Royal Society University Research Fellow-
ship UF160079.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-96145-3_15

A
u

th
o

r
P

ro
o

f

SOLVED
CVC4 - 29

CEGIS(T) - 49

TIME-
OUT

Experiments

86

0

12.5

25

37.5

50

TIME (s)

<1s [1,10] [10,100] [100,3600] T/O

24

46
11

38 39

75
10

22 21

36
11

42

SOLVED
CVC4 plain + sygus

repair - 62
CEGIS(T) - 44

CVC4 - 59

TIME-
OUT

Experiments

87

CEGIS(T) solves program synthesis via 1st order
solvers that support quantifiers:

• Enables use of existing solvers

Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples

CEGIS(T) - Conclusions

88

89

Algorithmic
Improvements Applications

Synthesis

Future Work

Algorithmic
Improvements Applications

Synthesis

Quantification
over infinite

domains

Fully automating
verification using

synthesis

More theories

90

Future Work

Quantifier free Quantifier free

• Reasoning about unbounded or large data structures
requires quantification

Quantification Over
Infinite Domains

∃P∀x . σ(P, x)

91

Quantifiers Quantifiers

• Reasoning about unbounded or large data structures
requires quantification

∃P∀x . σ(P, x)

Quantification Over
Infinite Domains

92

VERIFY

∃x¬σ(P*, x)

SYNTHESIZE

∃Pb ∀x . σb(Pb, x)

GENERALIZE

Pb → P*

RESTRICT

σ → σb σb

Pb

P*

unsat

unsat

sat

sat

solution

Quantification Over
Infinite Domains

93

VERIFY

∃x¬σ(P*, x)

SYNTHESIZE

∃Pb ∀x . σb(Pb, x)

GENERALIZE

Pb → P*

RESTRICT

σ → σb σb

Pb

P*

unsat

unsat

sat

sat

solution

Quantification Over
Infinite Domains

94

VERIFY

∃x¬σ(P*, x)

SYNTHESIZE

∃Pb ∀x . σb(Pb, x)

GENERALIZE

Pb → P*

RESTRICT

σ → σb σb

Pb

P*

unsat

unsat

sat

sat

solution

Quantification Over
Infinite Domains

95

VERIFY

∃x¬σ(P*, x)

SYNTHESIZE

∃Pb ∀x . σb(Pb, x)

GENERALIZE

Pb → P*

RESTRICT

σ → σb σb

Pb

P*

unsat

unsat

sat

sat

solution

Quantification Over
Infinite Domains

96

VERIFY

∃x¬σ(P*, x)

SYNTHESIZE

∃Pb ∀x . σb(Pb, x)

GENERALIZE

Pb → P*

RESTRICT

σ → σb σb

Pb

P*

unsat

unsat

sat

sat

solution

Quantification Over
Infinite Domains

97

98

19

synthesis problems could dramatically increase the scalability of synthesis with
quantifiers. Nevertheless, the progress SynRG demonstrates over the state-of-
the-art is significant.

Example Z3-Horn solver QUIC3 SynRG
duplication t/o t/o t/o
equal arrays 1 X X X
equal arrays 2 u u t/o
exists 1 u u X
Fibonacci t/o t/o t/o
fill 1 t/o t/o X
fill 2 t/o t/o t/o
find first 1 X X X
find first 2 u u X
permutation 1 u u t/o
permutation 2 t/o t/o X
permutation 3 t/o t/o X
permutation 4 t/o t/o X
permutation 5 t/o t/o X
simple array t/o t/o X
array and constant t/o t/o X
two indices 1 t/o X X

Table 1. Examples solved by each solver. We ran the experiments with a 600 s
timeout but all the solved examples were solved within 10 s. t/o indicates the
time-out was exceeded. u indicates the solver returned “unknown”.

7 Related work

There are many approaches that synthesize invariants containing quantifiers over
array indices, however, none of them allow for quantification in the specification,
and many work only in the theory of integers and not bit-vectors. QUIC3 [10]
is an adaptation of IC3 to synthesize quantified invariants, evaluated on array
manipulation programs from SV-COMP. Larraz et al. [17] present an SMT-based
array invariant generation approach, which is limited to universally quantified
loop invariants over arrays and scalar variables.

FreqHORN [8] uses syntax-guided synthesis to synthesize quantified invariants:
they identify a range of elements accessed in a loop and then identify potentially
useful facts about these individual elements and attempts to generalize these to
hypothesis about the entire range of the variables. This is the approach most
similar to our work, however the way they identify the range of elements is specific
to a loop invariant synthesis problem. Our approach relies on a more general
program synthesis phase to identify useful elements and so is not restricted
to loop invariant synthesis. FreqHORN also does not permit quantifiers in the
specification.

Algorithmic
Improvements Applications

Synthesis

Future Work

Quantification
over infinite

domains

Fully automating
verification using

synthesis

More theories

99

Fully Automated Assertion
Verification

• Verification of real-world software is not yet fully
automated

Manual writing:

• invariants

• pre-and-post-

conditions

• code summaries

100

Algorithmic
Improvements Applications

Synthesis

Quantification
over infinite

domains

Fully automating
verification using

synthesis

More theories

Future Work

101

Algorithmic
Improvements Applications

Synthesis

Quantification
over infinite

domains

Fully automating
verification using

synthesis

More theories

102

Questions?

