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We all write code

But writing correct code is hard...

SAT solvers allow computers to check code for us. 
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We all write code

But writing correct code is hard...

SAT solvers allow computers to check code for us. 

Synthesis could allow computers to repair code for us.
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Synthesising Environment 
Invariants for Modular Hardware 

Verification - Zhang et al.

Counterexample-Guided Synthesis of 
Perception Models and Control - Ghosh et al.

Counterexample-Guided Data 
Augmentation - Dreossi et al.

SyGuS Techniques in the Core of 
an SMT solver - Reynolds et al.
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• Define synthesis


• Describe how my research fits into this vision


• Details: CounterExample Guided Inductive Synthesis 
modulo Theories


• Future

In this talk
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What is synthesis?formal

^

• Synthesis that satisfies a specification .


• Can be framed as Oracle Guided Learning.

σ

Input-output 
examples

constraints
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What is synthesis?formal

^

• Synthesis that satisfies a specification .


• Can be framed as Oracle Guided Learning.

σ

LEARNER ORACLE

Positive examples
Negative examples

Positive and Negative examples
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What is synthesis?formal

^

Counterexamples

LEARNER ORACLE

CounterExample Guided Inductive Synthesis 
(CEGIS)[1]


• Logical specification .


• Synthesizes expressions/loop-free programs

σ

20

[1] Sketching stencils, Solar-Lezama et al. PLDI 2007



What is synthesis?formal

^

CounterExample Guided Inductive Synthesis 
(CEGIS)


• Logical specification .


• Synthesizes expressions/loop-free programs

σ

Counterexamples

SYNTHESIZE VERIFY
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SYNTHESIZE

VERIFY

CEGIS

∃P∀x . σ(P, x)
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CounterExample Guided Inductive 
Synthesis Modulo Theories

Extends CEGIS framework to

• verify generalized candidate solutions and

• return more general counterexamples.


CEGIS(T) is able to synthesize programs containing 
arbitrary constants that elude other solvers.


- Do not appear in the synthesis problem 
- Not 0, 1 or FFFF
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VERIFY

∃P* . ∀xi . σ(P*, xi)
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Is it a plant? 

Does it have legs?

Can I eat it? errm..

Yes

No
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Is it a plant? 

Does it have legs?

Can I eat it? errm..

Yes

No

SYNTHESIZE VERIFY
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int x = 5; 

while ( x < 1000) 
  x++; 

assert( 5 < x && x < 1005) 

Safety Invariant
init(x) ⟺ x = 0

trans(x, x′ ) ⟺ x′ = x + 1

inv(x) ∧ (x < 1000) ∧ trans(x, x′ ) ⟹ inv(x′ )

init(x) ⟹ inv(x)

inv(x) ∧ ¬(x < 1000) ⟹ (x < 1005) ∧ (x > 5)

find inv(x) such that:
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INIT

BAD

Safety Invariant
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inv(x) = (4 < x) ∧ (x < 1003)

int x = 5; 

while ( x < 1000) 
  x++; 

assert( 5 < x && x < 1005) 

init(x) ⟺ x = 0
trans(x, x′ ) ⟺ x′ = x + 1

Safety Invariant
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Synthesis Encoding

SYNTHESIZE

VERIFY

∃P* . ∀xi . σ(P*, xi)
Increase 

program size
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∃P* . ∀xi . σ(P*, xi)

P1 ::= arg1 |arg2 |C0

C0 ::= 0000 |0001 | . . . |1111

Synthesis Encoding
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C0 ::= 0000 |0001 | . . . |1111

∃P* . ∀xi . σ(P*, xi)

P1 ::= arg1 |arg2 |C0

T

Synthesis Encoding
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P1 = arg1



∃P* . ∀xi . σ(P*, xi)

T

Synthesis Encoding
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F

C0 ::= 0000 |0001 | . . . |1111

P1 ::= arg1 |arg2 |C0

P1 = arg2



C0 ::= 0000 |0001 | . . . |1111

∃P* . ∀xi . σ(P*, xi)

TF F F

F F

Synthesis Encoding
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P1 ::= arg1 |arg2 |C0

P1 = 1



∃P* . ∀xi . σ(P*, xi)

P1 ::= arg1 |arg2 |C0

C0 ::= 0000 |0001 | . . . |1111

P2 ::= P1 + P1 |arg1 |arg2 |C1

P3 ::= P2 + P1 |P2 − P1 | . . .

C1 ::= 0000 |0001 | . . . |1111

Synthesis Encoding
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∃P* . ∀xi . σ(P*, xi)

T

T T T T

T

F F F

P3 = 15 + arg1

Synthesis Encoding
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P1 ::= arg1 |arg2 |C0

C0 ::= 0000 |0001 | . . . |1111

P2 ::= P1 + P1 |arg1 |arg2 |C1

P3 ::= P2 + P1 |P2 − P1 | . . .

C1 ::= 0000 |0001 | . . . |1111



inv(x) = (4 < x) ∧ (x > 1003)

int x = 5; 

while ( x < 1000) 
  x++; 

assert( 5 < x && x < 1005) 

init(x) ⟺ x = 0
trans(x, x′ ) ⟺ x′ = x + 1

Safety Invariant
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SYNTHESIZE

VERIFY

x = 95inv(x) = (x < 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

inv(x) = (x < 96) x = 96
inv(x) = (x < 97)

And so on ..
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No
No

No

SYNTH VERIFY

Yes
Is it a plant? 

Does it 
have legs?

Yes

Can I eat 
it?

err

SYNTH VERIFY
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Can we ask more general 
questions?
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No, it’s not a plant
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No, it has 
< 4 legs

No, it’s not a plant
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No, it has 
< 8 legs

No, it’s not a plant

No, it has 
< 4 legs
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Can we give more general 
answers?
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More general questions

More general answers

CEGIS(T)
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PROPOSITIONAL 
SAT SOLVER

ADD CLAUSESDEDUCTION

DPLL

Theory Solver

DPLL(T)
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SYNTHESIZE
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CEGIS
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first order solver

CEGIS(T)
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SYNTHESIZE
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CEGIS(T) CEGIS

DEDUCTION Generalize 
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P*

P*[v]

Generalize

Candidate

Generalized candidate

(x < 95)

(x < v)

69



SYNTHESIZE

VERIFY

CEGIS

DEDUCTION Generalize 
candidate

P*[v]

first order solver

CEGIS(T)
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Deduction

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

is there a value for v that makes (x < v)  a valid invariant
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SYNTHESIZE

VERIFY

CEGIS

DEDUCTION Generalize 
candidate

¬P*[v]

first order solver

CEGIS(T)
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CEGIS(T) - SMT

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION
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First Order Solver

Solves first order formula with:

• Arbitrary propositional structure

• 1 quantifier alternation


Paper presents 2 versions:

• SMT (Z3) [1]

• Fourier Motzkin


74

[1] Z3: An Efficient SMT Solver. De Moura et al. TACAS 2008 



∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

CEGIS(T) - SMT
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∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

CEGIS(T) - SMT
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∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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∃v∀x . σ(P*[v], x) ∧ (v < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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UNSAT UNSAT

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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UNSAT

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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SAT

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)
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SAT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95
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TIMEOUT TIMEOUT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95
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Experiments
Benchmarks:

• Bitvectors

• Syntax-guided Synthesis competition 

(without the syntax)

• Loop invariants

• Danger invariants


Solvers:

• CVC4 [1]

• EUSolver, E3Solver, LoopInvGen – 

bitvectors with no grammar unsupported
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[1] CVC4. Barrett et al. CAV 2011
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Counterexample Guided Inductive
Synthesis Modulo Theories

Alessandro Abate1, Cristina David2,3(B) , Pascal Kesseli3,
Daniel Kroening1,3 , and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

cd652@cam.ac.uk
3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T ), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T )
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the

Supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN 712689
SC2. Cristina David is supported by the Royal Society University Research Fellow-
ship UF160079.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-96145-3_15
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CEGIS(T) solves program synthesis via 1st order 
solvers that support quantifiers: 

• Enables use of existing solvers


Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples


CEGIS(T) - Conclusions
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Quantifier free Quantifier free 

• Reasoning about unbounded or large data structures 
requires quantification

Quantification Over 
Infinite Domains

∃P∀x . σ(P, x)
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Quantifiers Quantifiers

• Reasoning about unbounded or large data structures 
requires quantification

∃P∀x . σ(P, x)

Quantification Over 
Infinite Domains
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synthesis problems could dramatically increase the scalability of synthesis with
quantifiers. Nevertheless, the progress SynRG demonstrates over the state-of-
the-art is significant.

Example Z3-Horn solver QUIC3 SynRG
duplication t/o t/o t/o
equal arrays 1 X X X
equal arrays 2 u u t/o
exists 1 u u X
Fibonacci t/o t/o t/o
fill 1 t/o t/o X
fill 2 t/o t/o t/o
find first 1 X X X
find first 2 u u X
permutation 1 u u t/o
permutation 2 t/o t/o X
permutation 3 t/o t/o X
permutation 4 t/o t/o X
permutation 5 t/o t/o X
simple array t/o t/o X
array and constant t/o t/o X
two indices 1 t/o X X

Table 1. Examples solved by each solver. We ran the experiments with a 600 s
timeout but all the solved examples were solved within 10 s. t/o indicates the
time-out was exceeded. u indicates the solver returned “unknown”.

7 Related work

There are many approaches that synthesize invariants containing quantifiers over
array indices, however, none of them allow for quantification in the specification,
and many work only in the theory of integers and not bit-vectors. QUIC3 [10]
is an adaptation of IC3 to synthesize quantified invariants, evaluated on array
manipulation programs from SV-COMP. Larraz et al. [17] present an SMT-based
array invariant generation approach, which is limited to universally quantified
loop invariants over arrays and scalar variables.

FreqHORN [8] uses syntax-guided synthesis to synthesize quantified invariants:
they identify a range of elements accessed in a loop and then identify potentially
useful facts about these individual elements and attempts to generalize these to
hypothesis about the entire range of the variables. This is the approach most
similar to our work, however the way they identify the range of elements is specific
to a loop invariant synthesis problem. Our approach relies on a more general
program synthesis phase to identify useful elements and so is not restricted
to loop invariant synthesis. FreqHORN also does not permit quantifiers in the
specification.
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Fully Automated Assertion 
Verification

• Verification of real-world software is not yet fully 
automated 

Manual writing:

•  invariants

• pre-and-post-

conditions

•  code summaries
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